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1 R e a c t i v e  S y s t e m s  

The te rm "reactive system" was introduced by David Harel and Amir 
Pnueli [HP85], and is now commonly accepted to designate permanent ly  op- 
erating systems, and to distinguish them from "trans]ormational systems" - -  
i.e, usual programs whose role is to terminate  with a result, computed from an 
initial da ta  (e.g., a compiler). In synchronous programming,  we understand it 
in a more restrictive way, distinguishing between "interactive" and "reactive" 
systems: 
Interactive systems permanent ly  communicate  with their environment,  but  at  
their  own speed. They  are able to synchronize with their environment,  i.e., mak-  
ing it wait. Concurrent  processes considered in operat ing systems or in data-base 
management ,  are generally interactive. 
Reactive systems, in our meaning, have to react to an environment which can- 
not wait. Typical  examples appear  when the environment is a physical process. 
The specific features of reactive systems have been pointed out many  times 
[Ha193,BCG88,Ber89]: 

- In contrast  with most  interactive systems, they are generally intended to be 
deterministic. 

- Their  description involves concurrency, for several different reasons: 
1. They run in parallel with their environment; 
2. They are often implemented on distr ibuted architectures, for reasons of 

speed, fault-tolerance, or physical distribution requirements; 
3. Most of the time, it is convenient to describe them as sets of concurrent 

processes. 
Cases (2) and (3) must  be distinguished. In the later case, concurrency is 
nothing but  a description facility; we call it logical concurrency. Generally, 
it has nothing to do with physical concurrency involved in case (2), and is 
not submit ted  to the same constraints. 

- They  are submit ted  to critical reliability requirements. In fact, most critical 
systems either are reactive, or contain reactive parts.  

* This work has been partially supported by the ESPRIT-LTR project "SYRF". 
** Verimag is a joint laboratory of Universit4 Joseph Fourier (Grenoble I), CNRS and 
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< Initialize Memory > 
foreach input_event do 

< Compute Outputs > 
< Update Memory > 

end 

a. "Event driven" 

< Initialize Memory > 
foreach period do 

< Read Inputs > 
< Compute Outputs > 
< Update Memory > 

end 

b. "Sampling" 

Fig. 1. Execution schemes for reactive systems 

2 Synchronous Programming 

All control engineers know a simple way to implement a reactive system by a 
single loop, of the form shown by Fig. 1.a. This program scheme is "event driven" 
since each reaction is triggered by an input event. 

Fig. 1.b shows an even simpler and more common scheme, which consists 
in periodically sampling the inputs. This "samplin]' scheme is mainly used in 
numeric systems which solve, e.g., systems of differential equations. These two 
schemes do not deeply differ, but  they correspond to different intuitive points of 
view. In both cases, the program typically implements an automaton: the states 
are the valuations of the memory, and each reaction corresponds to a transition 
of the automaton.  Such a transition may involve many computations, which, 
from the automaton point of view, are considered atomic (i.e., input changes 
are only taken into account between two reactions). This is the essence of the 
synchronous paradigm, where such a reaction is often said to take no time. An 
atomic reaction is called an instant (logical time), and all the events occurring 
during such a reaction are considered simultaneous. 

Now, automata  are useful tools - -  from their simplicity, expressive power, 
and efficiency - - ,  but  they are very difficult to design by hand 1. Synchronous 
languages aim at providing high level, modular, constructs, to make the design 
of such an automaton easier. The  basic construct that  all these languages pro- 
vide, is a notion of synchronous concurrency, inspired by Milner's synchronous 
product  [MilS1,Mi183]: in the sampling scheme, when automata  are composed 
in parallel, a transition of the product  is made of "simultaneous" transitions of 
all of them; in the event-driven scheme, some automata  can stay idle, when not 
triggered by events coming either from the environment or from other automata.  
In any case, when participating in such a compound transition, each automaton 
considers the outputs  of others as being part  of its own inputs. This "instanta- 
neous" communication is called the synchronous broadcast [BCG88,Ber89,BB91]. 
The important  point is that ,  in contrast with the asynchronous concurrency con- 
sidered in asynchronous languages like ADA [ADA83,Coh96], this synchronous 
product  can preserve determinism, a highly desirable feature in reactive systems 
design. 
There are two fields where this synchronous model has been used for years: 

1 Consider, e.g., scanners and parsers, and the usefulness of tools like LEX and YACC! 



In synchronous  circuit  design,  it is the usual model of communicating Mealy 
machines (FSM). Most hardware description formalisms (e.g., [Bli90,CLM91]) 
are naturally synchronous, or contain a significant synchronous subset [Per93]. 
As a matter of fact, the compilation and verification of synchronous programs 
borrow many techniques from circuit CAD. However, while hardware description 
languages can be directly used to describe the data part of a circuit, they are of 
little help in designing complex hardware controllers. This explains the success 
of synchronous imperative languages, like ESTEREL, in this field. 

In cont ro l  engineer ing,  high level specification formalisms are often data- 
flow synchronous formalisms, inherited from earlier analog technology: differ- 
ential or finite-difference equations, block-diagrams, analog networks. Inter- 
preted in a discrete world, these models can be formalized using the data-flow 
paradigm [Kah74,AW85,PP83]. However, these formalisms are seldom used as 
programming languages, and automatic code generation is not available. On 
the other hand, more imperative languages used for programming automatic 
controllers (e.g., Sequential Function Charts [LM93,AG96]) generally follow the 
same cyclic execution scheme. 

3 S y n c h r o n o u s  L a n g u a g e s  

[Ha193,IEE91] are general references on synchronous languages. 
Statecharts [Har87] is probably the first, and the most popular, formal lan- 

guage designed in the early eighties for the design of reactive systems. However, 
they were proposed more as a specification and design formalism, rather than as 
a programming language. Many features (synchronous product and broadcast) 
of the synchronous model are already present in Statecharts, but determinism 
is not ensured, and many semantic problems were raised [vdB94]. Almost at the 
same time, three programming languages were proposed by French academic 
groups: 

- ESTEREL 2 [BCG88,BS91,BG92,Ber93,Ber98] is an imperative language de- 
veloped at the "Ecole des Mines" and Inria, in Sophia Antipolis. 

-- SIGNAL 3 [LGLL91,BL90] and LUSTRE 4 [HCRP91,CPHP87] are data-flow 
languages, respectively designed at Inria (Rennes) and CNRS (Grenoble). 
SIGNAL is more "event-driven', while LUSTRE mainly corresponds to the 
%ampled" scheme. 

Also, following the formal definition of the synchronous model, a purely syn- 
chronous variant of the Statecharts was proposed: ARGOS 5 [Mar92]. The ideas 
of ARGOS are currently used as a basis for a graphical version of ESTEREL, 
n a m e d  SYNCCHARTS 6 [And96], proposed at the University of Nice. 

2 see http ://www. inria, fr/meije/esterel/esterel-eng, html 
3 see http ://www. inria, fr/Equipes/EPATK-eng, html 

4 see http ://www. imag. fr/VERIMAG/SYNCHRONE/lustre-english 

see http://www-verimag, imag. fr/SYNCHl%ONE/argonaute-english, html 
6 see http://www, inria, fr/meije/esterel/syncCharts/ 



In this section, we use simple examples to give a flavor of the programming 
styles in LUSTRE and ESTEREL. 

3.1 

LUSTRE is based on the synchronous data-flow 
model, i.e., on a synchronous interpretation 
of block-diagrams. A block diagram may be 
viewed as a network of operators (or as a 
system of equations, see opposite) running in 
parallel at the rate of their inputs. 

O v e r v i e w  o f  t h e  s y n c h r o n o u s  da ta - f l ow  l a n g u a g e  L u s t r e  

x 2 "~ 

Y 

s = 2 x  ( x + y )  

The synchronous interpretation of such a description consists in considering each 
variable as taking a value at each cycle of the program. According to this inter- 
pretation, the above description means: "at  any cycle n,  s~ = 2 * (xn + y~)". 

A LUSTRE program defines its output  variables as functions of its input 
variables. Each variable or expression E denotes a function of discrete time, giving 
its value En at each "instant" n. Variables are defined by means of equations: an 
equation "X=E", specifies that  the variable X is always equal to expression E. 

Expressions are made of variable identifiers, constants (considered as constant 
functions), usual arithmetic, boolean and conditional operators (considered as 
applying pointwise to functions) and only two specific operators: the "previ- 
ous" operator - -  which refers to the previous value of its argument - -  and the 
"followed-by" operator - -  which is used to define initial values: If E and F are 
LUSTRE expressions, so are "pre(E)" and "E -> F", and we have at any instant 
n > 0 :  

- (pre(E)),~ = En-1, while (pre(E))0 has the undefined value nil. 

- (E ->  F)~ = F~, whi le  (E ->  F)o -- Eo. 

For instance, if xn, Yn denote the respective values of x and y at "instant" n, 
the equation "z = 0->(pre(x) + y)" means that  the initial value Zo of z is 0, and 
that ,  at any non initial instant n, zn = xn-1 + yn- 

A LUSTRE program is s tructured into nodes: a node is a subprogram defining 
its output  parameters as functions of its input parameters. This definition is 
given by an unordered set of equations, possibly involving local variables. Once 
declared, a node may be freely instanciated in any expression, just as a basic 
operator.  

As an illustration, Figure 2 shows an extremely simple node describing a 
counter: it receives two integer inputs, ink and incr, and a boolean input, reset. 
It returns an integer output,  count, which behaves as follows: at the initial instant 
and whenever the input reset is true, the output  is equal to the current value of 
the input init. At any other instant, the value of count is equal to its previous 
value incremented by the current value of incr. One can make use of this node 
elsewhere, for instance in the equation 

mod5 = Counter(O, I,  p re (mod5)=4) ;  



node Counter (init, incr: int; reset: bool) 
returns (count: int); 

let 
count = init ->  if reset then init 

else pre(count)A-]ncr; 
tel 

(a) Program 

c y c l e n r .  0 1 2 3 4 5 6 7 

reset f f  f f  f f  f f  t t f f  f f  iT 
init 0 0 0 0 10 0 0 0 
incr 1 1 1 1 1 1 2 2 

count 0 1 2 3 10 11 13 15 
pre(count) nil 0 1 2 3 10 I i  13 

(b) Behavior 

Fig. 2. Example of LUSTRE program: A counter 

which instanciates the node Counter, with 0 and 1 as constant initial and incre- 
ment values, and resets it whenever the previous value of its output  is 4. The 
variable rood5 is then the cyclic sequence of integers modulo 5. 

So, through the notion of node, LUSTRE naturally offers hierarchical de- 
scription and component reuse. Data traveling along the "wires" of an operator  
network can be complex, structured informations. 

From a temporal  point of view, industrial applications show that  several 
processing chains, evolving at different rates, can appear in a single system. 
LUSTRE offers a notion of boolean clock, allowing the activation of nodes at 
different rates. 

3.2 O v e r v i e w  o f  the synchronous imperative language Esterel 

Being an imperative language, ESTEREL looks more familiar at first glance, since 
it provides usual constructs, like assignments, sequences, loops, . . . .  However, its 
synchronous semantics makes this apparent friendliness somewhat deceiptive: 
one must keep in mind that ,  apart  from a few statements that  explicitly take 
time (e.g., "await < signal >"), most ESTEREL statements are conceptually in- 
stantaneous, i.e., are executed in the same reaction than other statements tha t  
sequentially precede or follow them in the program. 

ESTEREL provides a lot of constructs tha t  we cannot present in detail. We 
only comment a small example, which is a speed supervisor (see Fig. 3): the 
program is intended to measure the speed of a vehicle, and to detect when this 
speed exceeds a maximum bound. 

Fig. 3.a describes a speedometer: it is an ESTEREL module, receiving two 
signals, Second and Meter, which occur, respectively, whenever the vehicle has 
travelled for 1 meter and a second has elapsed. It emits a valued signal Speed, 
carrying the current value of the speed, an integer, measured in m / s .  The body 
of the module is an infinite loop (lines 4-13) which initializes a local variable 
Distance - -  tha t  will measure the number of Meters received within a Second - -  
and enters a "do ... upto Second" construct (lines 6-10). This construct executes 
its body - -  a loop incrementing Distance on every occurrence of Meter (lines 
7-9) - - ,  until being interrupted by the next occurrence of the signal Second. So, 
on the first occurrence of Second following the entering in the global loop, the 
"do ... upto Second" statement is terminated and the counter Distance contains 



1 module Speedometer: 
2 input Second, Meter; 
3 output Speed : integer in 
4 loop 
5 var Distance : -  0 : integer in 
5 do 
7 every Meter do 
8 Distance :----- Distance+l 
g end every 
10 upto Second; 
11 emit Speed(Distance) 
12 end var 
13 end loop 
14 end module 

1 module SpeedSupervisor: 
2 input Second, Meter; 
3 output TooFast in 
4 signal Speed : integer in 
5 [ run Speedometer 
6 I I  
7 every Speed do 
8 if ?Speed > MaxSpeed 
9 then emit TooFast 
10 end if 
11 end every 
12 ] 
13 end signal 
14 end module 

(a) (b) 

Fig. 3. A speed supervisor in ESTEREL 

the number of Meters received during this time. The signal Speed, carrying the 
value of Distance, is simultaneously emitted (line 11), and the loop is entered 
again for a new Second. So, the signal Speed is emitted exactly each Second. 

Fig. 3.b shows the speed supervisor, which makes use of the Speedometer 
module. Here the input signals are Second and Meter, and the output is a signal 
TooFast that is emitted whenever the speed excceeds the bound MaxSpeed. A 
local signal Speed is used to transmit the result of the speedometer. Within the 
scope of this signal, the speedometer is instanciated 7, through the run construct 
(line 5), in parallel with a process comparing the speed to the bound: this pro- 
cess is triggered whenever the speedometer emits a Speed signal, whose current 
carried value ?Speed is compared with the bound, with the possible effect of 
emitting the signal TooFast. 

4 Compilation of Synchronous Languages 

This section is an overview of the various approaches related to the compilation of 
synchronous languages into sequential or distributed code. Beforehand, we have 
to tackle a static semantic problem, which is specific to synchronous languages: 
causality. 

4.1 Causa l i ty  analysis  

Generally speaking, the problem of causality comes from the fact that not all syn- 
chronous programs have a unique, deterministic meaning. In the data-flow model, 

7 In the run statement, the parameters of the Speedometer module could have been 
renamed. 



this problem has a very simple statement,  since it boils down to the well known 
problem of combinational loops in synchronous circuits [Ma193,Kan70,Sto92]: 
consider the following LUSTRE equations: 

(a )  x - -  n o t  x (b) y = y (c)  z = ( z * z  + 1 . 0 ) / 2 . 0  

(d)  u = if c t h e n  v e l se  w; v = if c t h e n  w e l se  u 

Case (a) is clearly a nonsense: the equation doesn't have any solution. Case 
(b) can be viewed as non deterministic, since y can have any value. Case (c) 
is an equation with one and only one solution (z=l ) ,  but  solving such implicit 
algebraic equations is clearly unfeasible, in general. Case (d) can be disputed: 
apparently, u depends on v, tha t  depends on u, so there is a combinational loop. 
Now, whatever be the value of the condition c, this loop is semantically cut. 

In data-flow languages, all these situations are quite unnatural  - -  because 
the user keeps the data  dependences in mind - -  and generally easy to avoid. 
This is why, in LUSTRE, all the preceding examples are rejected by the com- 
piler. However, in imperative languages like ESTEREL, ARGOS, or Statecharts,  
it is extremely easy to write programs with apparent causality problems - -  i.e., 
where, in some states, the presence of a signal seems to depend on itself - - ,  
to which users want to give meaning. More precise criteria must be applied to 
identify really problematic programs. Most of the various semantics that  have 
been proposed for Statechart  [vdB94] differ from each other by the way these 
problems are solved. 

Let's go further into these problems, by means of some ESTEREL examples 
(see Fig. 4), taken from [Ber95]. A simple way of examining the correctness of 
these examples is by considering all the cases of presence/absence of signals: we 
want to have one (reactivity) and only one (determinism) consistent solution, 
for each configuration of input signals. For the module P1 of Fig. 4, either 0 
is present, in which case the e l se  part  of the "present ... else ..." s tatement  is 
not executed, so 0 is not emitted, and 0 is not present; this assumption is not 
consistent; or 0 is absent, the e l se  part  is executed, so 0 is emitted, and the 
assumption is again violated. This module doesn't have any consistent behavior. 
In fact, this example shows exactly the same kind of inconsistency as the equation 
"0  = not 0"  in LUSTRE. Consider now the module P2 of Fig. 4. If we assume 
that  0 is present, the then part  of the "present ... then ..." s tatement is executed, 
so 0 is emitted, and our assumption is satisfied. Now, assuming that  0 is absent, 
0 is not emitted, and our assumption is satisfied again. Here, we have two 
consistent behaviors, it is a case of non determinism similar to the LUSTRE 
equation "0 = 0" .  The module P3 is a similar case of non determinism, showing 
that  the problem can result from dependence paths of arbi t rary length. For 
P4, if I is present, the first process in the paxatlel construct emits S, and the 
presence of S makes the second process to emit 0 .  Conversely, if I is absent, 
neither S nor 0 is emitted. So P4 is correct; it corresponds to the LUSTRE 
fragment "S = I ; 0 = S", which doesn't  show any loop. The case of P5 is more 
questionable: the first process in the parallel seems to be non deterministic (like 
in P2). Now, if we assume that  01 is present, we find that  the second process in 



module PI¢ 
output O; 

present 0 
else emit 0 

end present 
end module 

module P2: 
output O; 

present 0 
then emit 0 

end present 
end module 

module P3: 
output 01, 02; 

present O1 then emit 02 end 
II 

present 02 then emit 01 end 
end module 

module P4: 
input I; 
output O; 

signal S in 
present I then emit S end 

II 
present S then emit 0 end 

end signal 
end module 

module PS: 
output 01, 02; 

present Ol then emit Ol end 
II 

present Ol then 
present 02 else emit 02 end 

end present 
end module 

Fig. 4. Causality problems in ESTEREL 

the parallel doesn't have any behavior (like in Pl). So, P5 has one and only one 
consistent behavior, where neither 01 nor 02 is emitted. 

All the semantics proposed for synchronous languages reject modules Pl, P2, 
and P3, and accept P4. The Boolean causality considered in [HM95], analyzes 
the problem in classical logic, and accepts also P5, since it has one and only 
one solution. The constructive causality [SBT96,Ber95] rejects P5, because the 
only solution doesn't have a constructive explanation, by means of causes and 
effects. Moreover, the constructive causality has been shown [SBT96] to coincide 
with electric stability: a constructively causal circuit will stabilize whatever be 
the traversal delays of its gates. 

Causality problems are an obstacle to separate compilation and distributed 
code generation. Several authors s [Bou91,BdS96,Bon95] propose a weakenning 
of the synchronous communication, to get round these problems. 

4.2 Sequential code generation 

The straightforward way for compiling a data-flow synchronous language like 
LUSTRE into sequential code, is by generating a single loop, after conveniently 
sorting the equations according to their dependences. Sequential code genera- 
tion from an imperative language like ESTEREL is less obvious: in the compilers 
ESTEREL-V2 and -V3 [BCG88,BG92], the control part of the program was com- 
piled into an explicit automaton, representing the control structure of the code. 
This approach has also been applied to LUSTRE [CPHP87], with on-the fly min- 
imization (by bisimulation) of the automaton [BFH+92,HRR91]. The explicit 
automaton is a very efficient implementation - -  since the whole internal syn- 
chronization of the program is computed at compile time -- ,  with the drawback 

8 See also h t tp : / /w~ ,  inria,  f r /mei je / rc / rc-project ,  htm.].. 



of possibly involving an exponential expansion of the code size. This is why it 
is now generally abandonned for single loop compilation. However, it played a 
central role in the development of verification tools. 

The single loop code generation for ESTEREL was a side-effect of the develop- 
ment of a silicon compiler [Ber92] (see §4.5): compiling ESTEREL into circuits is 
mainly a translation into a data-flow network, which can be easily implemented 
by a single loop program. The ESTEREL-V4 and -V5 compilers [Ber95] are based 
on this principle. 

About the compilation of synchronous imperative languages into data-flow 
networks, let us mention also the translation of ARGOS [MH96] into the DC com- 
mon format (see §4.3) and the REGLO tool [Ray96] which produces recognizers 
(in LUSTRE) for regular expressions. 

4.3 C o m m o n  formats 

The LUSTRE, SIGNAL, and ESTEREL compilers were developed in tight cooper- 
ation. In order to share common tools, and to make the languages integration 
easier, common formats were defined and used as intermediate codes in the 
compilers: the Oc  ("object code") format [PS87] was used to encode explicit au- 
tomata in the earlier versions of the compilers. Another format [CS95], named 
D c / D c +  (for "declarative code") is used now to encode implicit automata, at 
the equational level. 

4.4 Dis tr ibuted  code generation 

Compiling synchronous languages into code for distributed architectures is ob- 
viously a challenge. In [ML94], techniques are proposed to separate a clocked 
data-flow networks into sub-networks independent enough to be sperately com- 
piled into processes. The SYNDEX too1 [LSSS91] can be used to schedule th~ 
resulting tasks on various architectures, and to study adjust the performances 
of the resulting system. Another approach is presented in [CGP94,CG95], which 
starts from the sequential code produced by the standard compilers, and from 
distribution directives given by the user; it consists of (1) replicating the code on 
each site of the architecture, (2) simplifying the code on each site according to 
its assigned role, and (3) adding communications along simple bounded FIFOs, 
to ensure both communication and synchronization. 

4.5 Sil icon compi l ing 

Compiling synchronous programs into circuits is also an important goal, partic- 
ularly in a codesign approach. Synchronous data-flow languages are very close to 
hardware description languages (HDLs), and their compilation to circuits is quite 
easy (see, e.g., [RH91]). The translation into circuits of ESTEREL was a much 
more difficult task, but the result is more interesting, since ESTEREL is of much 
higher level than usual HDLs for describing controllers. The translation proposed 
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in [Ber92] is structural, and must be completed by deep optimizations, using both 
standard CAD tools [SSL+92], and specific techniques [STB96,STB97] that take 
advantage of knowledge coming from the structure of the source code. 

5 V e r i f i c a t i o n  o f  S y n c h r o n o u s  P r o g r a m s  

Since synchronous programming is mainly devoted to the field of critical embed- 
ded systems, the formal verification of synchronous programs is a particularly 
important goal. By chance, it can take advantage of some specific features of the 
application field and of the synchronous model: 

- Experience shows that critical properties that must be verified are generally 
simple, sa]ety properties. By "simple properties", we mean logical depen- 
dency relations between events, in contrast with deep arithmetic properties. 
As a consequence, these properties can often be model-checked on an ab- 
straction of the program [Ha194], the most natural of which is the control 
automaton generated by the earlier versions of the compilers (see §4.2). 

- The control automaton, being obtained as a synchronous product, is gener- 
ally much smaller that models obtained by asynchronous composition (no 
interleaving, no need for partial orders, . . .  ). 

- The transition relation is a vectorial ]unction, which allows particularly effi- 
cient BDD-based techniques [CBM89a] to be applied for the symbolic con- 
struction of the reachable state space. 

- Thanks to the synchronous model, a specific approach can be applied to 
express safety properties by means of synchronous observers, i.e., special 
programs possibly written in the same language as the program under veri- 
fication. 

The verification methods for synchronous programs are all based on the control 
automaton. 
Reduction methods have been applied [dSR94], mainly to automata compiled 
from ESTEREL: using the tools AUTO/AUTOGRAPH [RdS90] reduced views of 
the automaton can be obtained and compared. 
Other methods are based on model-checking [QS82,CES86], and mainly symbolic 
model-checking [CBM89b,BCM+90]. TEMPEST [JPV95] is a model-checker of 
temporal logic formulas dedicated to ESTEREL. SIGALI [LDBL93] model-checks 
SIGNAL programs, using the symbolic resolution of SIGNAL clocks constraints. 
The tool LESAR [HLR92] is a symbolic, BDD- 
based, model-checker of LUSTRE programs; it 
is based on the use of synchronous observers, 
to describe both the property to be checked 
and the assumptions on the program envi- 
ronment under which these properties are in- 
tended to hold: an observer of a safety prop- 
erty is a program, taking as inputs the in- 
puts/outputs of the program under verifica- 
tion, and deciding (e.g., by emitting an alarm 

F 
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signal) at each instant whether the property is violated. Running in parallel the 
program, P, an observer • of the desired property, and an observer A of the 
assumption made about the environment one has just to check that either the 
alarm signal of • is never emitted (property satisfied) or the alarm signal of 
A is emitted (assumption violated), which can be done by a simple traversal 
of the reachable states of the compound program. Besides this only need of 
considering reachable states (instead of paths) this specification technique has 
several advantages: 

- observers are written in the same language as the program under verification; 
- observers are executable; they can be tested, or even kept in the actual im- 

plementation (redundancy, autotest). 

Notice that, with an asynchronous language, observers would have to be explic- 
itly synchronized with the program under verification, with the risk of changing 
its behavior. For an application of this technique, see also [WNT96]. 

Taking into account some numerical aspects - -  in particular delay counting 
- -  is considered in [HPR97], using abstract interpretation techniques [CC77]. In 
[LHR97], observers and abstract intepretation are used for verifying parameter- 
ized networks of synchronous processes. 

6 Other Related Topics 

[Le94] is an interesting comparative study of formal description techniques, in- 
cluding synchronous languages. This section lists some other works related to 
synchronous programming. 

P r o g r a m  tes t ing  will remain a validation technique complementary to for- 
mal verification. The automatic testing of synchronous programs is studied 
in [MHMM95,TMC94,OP94,NRW98]. 

In t eg ra t ion  of  s y n c h r o n o u s / a s y n c h r o n o u s  aspects:  In general, only some 
parts of a complex system can be suitably described in the synchronous model. 
The language ELECTRE [CR95] is devoted to the synchronous control of asyn- 
chronous tasks. CRP [BSR93] allows ESTEREL modules to be composed asyn- 
chronously. 

Combina t i on  of  formal isms:  Data-flow and imperative synchronous lan- 
guages are complementary, and several attempts have been made, either to 
combine them [JLRM94], or to introduce imperative concepts in data-flow lan- 
guages [RM95,MR98]. The most advanced work on combining synchronousa lan- 
guages is probably the "SYNCHRONIE WORKBENCH 9'', developped at GMD. 

Higher  order  data-f low languages:  Data-flow synchronous languages can be 
viewed as lazy functional languages working on infinite sequence. "Lucid syn- 
chrone" [Cas93,CP95,CP96] is a higher order extension of LUSTRE, where the 
synchronous execution (bounded memory) is preserved. 

9 See http://set.gmd.de/EES/synchronie/swb.html. 
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