
Synchronous Programming of Reactive Systems*
A T u t o r i a l a n d C o m m e n t e d B i b l i o g r a p h y

Nicolas Halbwachs

V4rimag**, Grenoble - France
e-mail: Nicolas. Halbwachs@imag. fr

1 R e a c t i v e S y s t e m s

The te rm "reactive system" was introduced by David Harel and Amir
Pnueli [HP85], and is now commonly accepted to designate permanent ly op-
erating systems, and to distinguish them from "trans]ormational systems" - -
i.e, usual programs whose role is to terminate with a result, computed from an
initial da ta (e.g., a compiler). In synchronous programming, we understand it
in a more restrictive way, distinguishing between "interactive" and "reactive"
systems:
Interactive systems permanent ly communicate with their environment, but at
their own speed. They are able to synchronize with their environment, i.e., mak-
ing it wait. Concurrent processes considered in operat ing systems or in data-base
management , are generally interactive.
Reactive systems, in our meaning, have to react to an environment which can-
not wait. Typical examples appear when the environment is a physical process.
The specific features of reactive systems have been pointed out many times
[Ha193,BCG88,Ber89]:

- In contrast with most interactive systems, they are generally intended to be
deterministic.

- Their description involves concurrency, for several different reasons:
1. They run in parallel with their environment;
2. They are often implemented on distr ibuted architectures, for reasons of

speed, fault-tolerance, or physical distribution requirements;
3. Most of the time, it is convenient to describe them as sets of concurrent

processes.
Cases (2) and (3) must be distinguished. In the later case, concurrency is
nothing but a description facility; we call it logical concurrency. Generally,
it has nothing to do with physical concurrency involved in case (2), and is
not submit ted to the same constraints.

- They are submit ted to critical reliability requirements. In fact, most critical
systems either are reactive, or contain reactive parts.

* This work has been partially supported by the ESPRIT-LTR project "SYRF".
** Verimag is a joint laboratory of Universit4 Joseph Fourier (Grenoble I), CNRS and

INPG

< Initialize Memory >
foreach input_event do

< Compute Outputs >
< Update Memory >

end

a. "Event driven"

< Initialize Memory >
foreach period do

< Read Inputs >
< Compute Outputs >
< Update Memory >

end

b. "Sampling"

Fig. 1. Execution schemes for reactive systems

2 Synchronous Programming

All control engineers know a simple way to implement a reactive system by a
single loop, of the form shown by Fig. 1.a. This program scheme is "event driven"
since each reaction is triggered by an input event.

Fig. 1.b shows an even simpler and more common scheme, which consists
in periodically sampling the inputs. This "samplin]' scheme is mainly used in
numeric systems which solve, e.g., systems of differential equations. These two
schemes do not deeply differ, but they correspond to different intuitive points of
view. In both cases, the program typically implements an automaton: the states
are the valuations of the memory, and each reaction corresponds to a transition
of the automaton. Such a transition may involve many computations, which,
from the automaton point of view, are considered atomic (i.e., input changes
are only taken into account between two reactions). This is the essence of the
synchronous paradigm, where such a reaction is often said to take no time. An
atomic reaction is called an instant (logical time), and all the events occurring
during such a reaction are considered simultaneous.

Now, automata are useful tools - - from their simplicity, expressive power,
and efficiency - - , but they are very difficult to design by hand 1. Synchronous
languages aim at providing high level, modular, constructs, to make the design
of such an automaton easier. The basic construct that all these languages pro-
vide, is a notion of synchronous concurrency, inspired by Milner's synchronous
product [MilS1,Mi183]: in the sampling scheme, when automata are composed
in parallel, a transition of the product is made of "simultaneous" transitions of
all of them; in the event-driven scheme, some automata can stay idle, when not
triggered by events coming either from the environment or from other automata.
In any case, when participating in such a compound transition, each automaton
considers the outputs of others as being part of its own inputs. This "instanta-
neous" communication is called the synchronous broadcast [BCG88,Ber89,BB91].
The important point is that , in contrast with the asynchronous concurrency con-
sidered in asynchronous languages like ADA [ADA83,Coh96], this synchronous
product can preserve determinism, a highly desirable feature in reactive systems
design.
There are two fields where this synchronous model has been used for years:

1 Consider, e.g., scanners and parsers, and the usefulness of tools like LEX and YACC!

In synchronous circuit design, it is the usual model of communicating Mealy
machines (FSM). Most hardware description formalisms (e.g., [Bli90,CLM91])
are naturally synchronous, or contain a significant synchronous subset [Per93].
As a matter of fact, the compilation and verification of synchronous programs
borrow many techniques from circuit CAD. However, while hardware description
languages can be directly used to describe the data part of a circuit, they are of
little help in designing complex hardware controllers. This explains the success
of synchronous imperative languages, like ESTEREL, in this field.

In cont ro l engineer ing, high level specification formalisms are often data-
flow synchronous formalisms, inherited from earlier analog technology: differ-
ential or finite-difference equations, block-diagrams, analog networks. Inter-
preted in a discrete world, these models can be formalized using the data-flow
paradigm [Kah74,AW85,PP83]. However, these formalisms are seldom used as
programming languages, and automatic code generation is not available. On
the other hand, more imperative languages used for programming automatic
controllers (e.g., Sequential Function Charts [LM93,AG96]) generally follow the
same cyclic execution scheme.

3 S y n c h r o n o u s L a n g u a g e s

[Ha193,IEE91] are general references on synchronous languages.
Statecharts [Har87] is probably the first, and the most popular, formal lan-

guage designed in the early eighties for the design of reactive systems. However,
they were proposed more as a specification and design formalism, rather than as
a programming language. Many features (synchronous product and broadcast)
of the synchronous model are already present in Statecharts, but determinism
is not ensured, and many semantic problems were raised [vdB94]. Almost at the
same time, three programming languages were proposed by French academic
groups:

- ESTEREL 2 [BCG88,BS91,BG92,Ber93,Ber98] is an imperative language de-
veloped at the "Ecole des Mines" and Inria, in Sophia Antipolis.

-- SIGNAL 3 [LGLL91,BL90] and LUSTRE 4 [HCRP91,CPHP87] are data-flow
languages, respectively designed at Inria (Rennes) and CNRS (Grenoble).
SIGNAL is more "event-driven', while LUSTRE mainly corresponds to the
%ampled" scheme.

Also, following the formal definition of the synchronous model, a purely syn-
chronous variant of the Statecharts was proposed: ARGOS 5 [Mar92]. The ideas
of ARGOS are currently used as a basis for a graphical version of ESTEREL,
n a m e d SYNCCHARTS 6 [And96], proposed at the University of Nice.

2 see http ://www. inria, fr/meije/esterel/esterel-eng, html
3 see http ://www. inria, fr/Equipes/EPATK-eng, html

4 see http ://www. imag. fr/VERIMAG/SYNCHRONE/lustre-english

see http://www-verimag, imag. fr/SYNCHl%ONE/argonaute-english, html
6 see http://www, inria, fr/meije/esterel/syncCharts/

In this section, we use simple examples to give a flavor of the programming
styles in LUSTRE and ESTEREL.

3.1

LUSTRE is based on the synchronous data-flow
model, i.e., on a synchronous interpretation
of block-diagrams. A block diagram may be
viewed as a network of operators (or as a
system of equations, see opposite) running in
parallel at the rate of their inputs.

O v e r v i e w o f t h e s y n c h r o n o u s da ta - f l ow l a n g u a g e L u s t r e

x 2 "~

Y

s = 2 x (x + y)

The synchronous interpretation of such a description consists in considering each
variable as taking a value at each cycle of the program. According to this inter-
pretation, the above description means: "at any cycle n, s~ = 2 * (xn + y~)".

A LUSTRE program defines its output variables as functions of its input
variables. Each variable or expression E denotes a function of discrete time, giving
its value En at each "instant" n. Variables are defined by means of equations: an
equation "X=E", specifies that the variable X is always equal to expression E.

Expressions are made of variable identifiers, constants (considered as constant
functions), usual arithmetic, boolean and conditional operators (considered as
applying pointwise to functions) and only two specific operators: the "previ-
ous" operator - - which refers to the previous value of its argument - - and the
"followed-by" operator - - which is used to define initial values: If E and F are
LUSTRE expressions, so are "pre(E)" and "E -> F", and we have at any instant
n > 0 :

- (pre(E)),~ = En-1, while (pre(E))0 has the undefined value nil.

- (E -> F)~ = F~, whi le (E -> F)o -- Eo.

For instance, if xn, Yn denote the respective values of x and y at "instant" n,
the equation "z = 0->(pre(x) + y)" means that the initial value Zo of z is 0, and
that , at any non initial instant n, zn = xn-1 + yn-

A LUSTRE program is s tructured into nodes: a node is a subprogram defining
its output parameters as functions of its input parameters. This definition is
given by an unordered set of equations, possibly involving local variables. Once
declared, a node may be freely instanciated in any expression, just as a basic
operator.

As an illustration, Figure 2 shows an extremely simple node describing a
counter: it receives two integer inputs, ink and incr, and a boolean input, reset.
It returns an integer output, count, which behaves as follows: at the initial instant
and whenever the input reset is true, the output is equal to the current value of
the input init. At any other instant, the value of count is equal to its previous
value incremented by the current value of incr. One can make use of this node
elsewhere, for instance in the equation

mod5 = Counter(O, I, p re (mod5)=4) ;

node Counter (init, incr: int; reset: bool)
returns (count: int);

let
count = init -> if reset then init

else pre(count)A-]ncr;
tel

(a) Program

c y c l e n r . 0 1 2 3 4 5 6 7

reset f f f f f f f f t t f f f f iT
init 0 0 0 0 10 0 0 0
incr 1 1 1 1 1 1 2 2

count 0 1 2 3 10 11 13 15
pre(count) nil 0 1 2 3 10 I i 13

(b) Behavior

Fig. 2. Example of LUSTRE program: A counter

which instanciates the node Counter, with 0 and 1 as constant initial and incre-
ment values, and resets it whenever the previous value of its output is 4. The
variable rood5 is then the cyclic sequence of integers modulo 5.

So, through the notion of node, LUSTRE naturally offers hierarchical de-
scription and component reuse. Data traveling along the "wires" of an operator
network can be complex, structured informations.

From a temporal point of view, industrial applications show that several
processing chains, evolving at different rates, can appear in a single system.
LUSTRE offers a notion of boolean clock, allowing the activation of nodes at
different rates.

3.2 O v e r v i e w o f the synchronous imperative language Esterel

Being an imperative language, ESTEREL looks more familiar at first glance, since
it provides usual constructs, like assignments, sequences, loops, However, its
synchronous semantics makes this apparent friendliness somewhat deceiptive:
one must keep in mind that , apart from a few statements that explicitly take
time (e.g., "await < signal >"), most ESTEREL statements are conceptually in-
stantaneous, i.e., are executed in the same reaction than other statements tha t
sequentially precede or follow them in the program.

ESTEREL provides a lot of constructs tha t we cannot present in detail. We
only comment a small example, which is a speed supervisor (see Fig. 3): the
program is intended to measure the speed of a vehicle, and to detect when this
speed exceeds a maximum bound.

Fig. 3.a describes a speedometer: it is an ESTEREL module, receiving two
signals, Second and Meter, which occur, respectively, whenever the vehicle has
travelled for 1 meter and a second has elapsed. It emits a valued signal Speed,
carrying the current value of the speed, an integer, measured in m / s . The body
of the module is an infinite loop (lines 4-13) which initializes a local variable
Distance - - tha t will measure the number of Meters received within a Second - -
and enters a "do ... upto Second" construct (lines 6-10). This construct executes
its body - - a loop incrementing Distance on every occurrence of Meter (lines
7-9) - - , until being interrupted by the next occurrence of the signal Second. So,
on the first occurrence of Second following the entering in the global loop, the
"do ... upto Second" statement is terminated and the counter Distance contains

1 module Speedometer:
2 input Second, Meter;
3 output Speed : integer in
4 loop
5 var Distance : - 0 : integer in
5 do
7 every Meter do
8 Distance :----- Distance+l
g end every
10 upto Second;
11 emit Speed(Distance)
12 end var
13 end loop
14 end module

1 module SpeedSupervisor:
2 input Second, Meter;
3 output TooFast in
4 signal Speed : integer in
5 [run Speedometer
6 I I
7 every Speed do
8 if ?Speed > MaxSpeed
9 then emit TooFast
10 end if
11 end every
12]
13 end signal
14 end module

(a) (b)

Fig. 3. A speed supervisor in ESTEREL

the number of Meters received during this time. The signal Speed, carrying the
value of Distance, is simultaneously emitted (line 11), and the loop is entered
again for a new Second. So, the signal Speed is emitted exactly each Second.

Fig. 3.b shows the speed supervisor, which makes use of the Speedometer
module. Here the input signals are Second and Meter, and the output is a signal
TooFast that is emitted whenever the speed excceeds the bound MaxSpeed. A
local signal Speed is used to transmit the result of the speedometer. Within the
scope of this signal, the speedometer is instanciated 7, through the run construct
(line 5), in parallel with a process comparing the speed to the bound: this pro-
cess is triggered whenever the speedometer emits a Speed signal, whose current
carried value ?Speed is compared with the bound, with the possible effect of
emitting the signal TooFast.

4 Compilation of Synchronous Languages

This section is an overview of the various approaches related to the compilation of
synchronous languages into sequential or distributed code. Beforehand, we have
to tackle a static semantic problem, which is specific to synchronous languages:
causality.

4.1 Causa l i ty analysis

Generally speaking, the problem of causality comes from the fact that not all syn-
chronous programs have a unique, deterministic meaning. In the data-flow model,

7 In the run statement, the parameters of the Speedometer module could have been
renamed.

this problem has a very simple statement, since it boils down to the well known
problem of combinational loops in synchronous circuits [Ma193,Kan70,Sto92]:
consider the following LUSTRE equations:

(a) x - - n o t x (b) y = y (c) z = (z * z + 1 . 0) / 2 . 0

(d) u = if c t h e n v e l se w; v = if c t h e n w e l se u

Case (a) is clearly a nonsense: the equation doesn't have any solution. Case
(b) can be viewed as non deterministic, since y can have any value. Case (c)
is an equation with one and only one solution (z=l) , but solving such implicit
algebraic equations is clearly unfeasible, in general. Case (d) can be disputed:
apparently, u depends on v, tha t depends on u, so there is a combinational loop.
Now, whatever be the value of the condition c, this loop is semantically cut.

In data-flow languages, all these situations are quite unnatural - - because
the user keeps the data dependences in mind - - and generally easy to avoid.
This is why, in LUSTRE, all the preceding examples are rejected by the com-
piler. However, in imperative languages like ESTEREL, ARGOS, or Statecharts,
it is extremely easy to write programs with apparent causality problems - - i.e.,
where, in some states, the presence of a signal seems to depend on itself - - ,
to which users want to give meaning. More precise criteria must be applied to
identify really problematic programs. Most of the various semantics that have
been proposed for Statechart [vdB94] differ from each other by the way these
problems are solved.

Let's go further into these problems, by means of some ESTEREL examples
(see Fig. 4), taken from [Ber95]. A simple way of examining the correctness of
these examples is by considering all the cases of presence/absence of signals: we
want to have one (reactivity) and only one (determinism) consistent solution,
for each configuration of input signals. For the module P1 of Fig. 4, either 0
is present, in which case the e l se part of the "present ... else ..." s tatement is
not executed, so 0 is not emitted, and 0 is not present; this assumption is not
consistent; or 0 is absent, the e l se part is executed, so 0 is emitted, and the
assumption is again violated. This module doesn't have any consistent behavior.
In fact, this example shows exactly the same kind of inconsistency as the equation
"0 = not 0" in LUSTRE. Consider now the module P2 of Fig. 4. If we assume
that 0 is present, the then part of the "present ... then ..." s tatement is executed,
so 0 is emitted, and our assumption is satisfied. Now, assuming that 0 is absent,
0 is not emitted, and our assumption is satisfied again. Here, we have two
consistent behaviors, it is a case of non determinism similar to the LUSTRE
equation "0 = 0" . The module P3 is a similar case of non determinism, showing
that the problem can result from dependence paths of arbi t rary length. For
P4, if I is present, the first process in the paxatlel construct emits S, and the
presence of S makes the second process to emit 0 . Conversely, if I is absent,
neither S nor 0 is emitted. So P4 is correct; it corresponds to the LUSTRE
fragment "S = I ; 0 = S", which doesn't show any loop. The case of P5 is more
questionable: the first process in the parallel seems to be non deterministic (like
in P2). Now, if we assume that 01 is present, we find that the second process in

module PI¢
output O;

present 0
else emit 0

end present
end module

module P2:
output O;

present 0
then emit 0

end present
end module

module P3:
output 01, 02;

present O1 then emit 02 end
II

present 02 then emit 01 end
end module

module P4:
input I;
output O;

signal S in
present I then emit S end

II
present S then emit 0 end

end signal
end module

module PS:
output 01, 02;

present Ol then emit Ol end
II

present Ol then
present 02 else emit 02 end

end present
end module

Fig. 4. Causality problems in ESTEREL

the parallel doesn't have any behavior (like in Pl). So, P5 has one and only one
consistent behavior, where neither 01 nor 02 is emitted.

All the semantics proposed for synchronous languages reject modules Pl, P2,
and P3, and accept P4. The Boolean causality considered in [HM95], analyzes
the problem in classical logic, and accepts also P5, since it has one and only
one solution. The constructive causality [SBT96,Ber95] rejects P5, because the
only solution doesn't have a constructive explanation, by means of causes and
effects. Moreover, the constructive causality has been shown [SBT96] to coincide
with electric stability: a constructively causal circuit will stabilize whatever be
the traversal delays of its gates.

Causality problems are an obstacle to separate compilation and distributed
code generation. Several authors s [Bou91,BdS96,Bon95] propose a weakenning
of the synchronous communication, to get round these problems.

4.2 Sequential code generation

The straightforward way for compiling a data-flow synchronous language like
LUSTRE into sequential code, is by generating a single loop, after conveniently
sorting the equations according to their dependences. Sequential code genera-
tion from an imperative language like ESTEREL is less obvious: in the compilers
ESTEREL-V2 and -V3 [BCG88,BG92], the control part of the program was com-
piled into an explicit automaton, representing the control structure of the code.
This approach has also been applied to LUSTRE [CPHP87], with on-the fly min-
imization (by bisimulation) of the automaton [BFH+92,HRR91]. The explicit
automaton is a very efficient implementation - - since the whole internal syn-
chronization of the program is computed at compile time -- , with the drawback

8 See also h t tp : / /w~ , inria, f r /mei je / rc / rc-project , htm.]..

of possibly involving an exponential expansion of the code size. This is why it
is now generally abandonned for single loop compilation. However, it played a
central role in the development of verification tools.

The single loop code generation for ESTEREL was a side-effect of the develop-
ment of a silicon compiler [Ber92] (see §4.5): compiling ESTEREL into circuits is
mainly a translation into a data-flow network, which can be easily implemented
by a single loop program. The ESTEREL-V4 and -V5 compilers [Ber95] are based
on this principle.

About the compilation of synchronous imperative languages into data-flow
networks, let us mention also the translation of ARGOS [MH96] into the DC com-
mon format (see §4.3) and the REGLO tool [Ray96] which produces recognizers
(in LUSTRE) for regular expressions.

4.3 C o m m o n formats

The LUSTRE, SIGNAL, and ESTEREL compilers were developed in tight cooper-
ation. In order to share common tools, and to make the languages integration
easier, common formats were defined and used as intermediate codes in the
compilers: the Oc ("object code") format [PS87] was used to encode explicit au-
tomata in the earlier versions of the compilers. Another format [CS95], named
D c / D c + (for "declarative code") is used now to encode implicit automata, at
the equational level.

4.4 Dis tr ibuted code generation

Compiling synchronous languages into code for distributed architectures is ob-
viously a challenge. In [ML94], techniques are proposed to separate a clocked
data-flow networks into sub-networks independent enough to be sperately com-
piled into processes. The SYNDEX too1 [LSSS91] can be used to schedule th~
resulting tasks on various architectures, and to study adjust the performances
of the resulting system. Another approach is presented in [CGP94,CG95], which
starts from the sequential code produced by the standard compilers, and from
distribution directives given by the user; it consists of (1) replicating the code on
each site of the architecture, (2) simplifying the code on each site according to
its assigned role, and (3) adding communications along simple bounded FIFOs,
to ensure both communication and synchronization.

4.5 Sil icon compi l ing

Compiling synchronous programs into circuits is also an important goal, partic-
ularly in a codesign approach. Synchronous data-flow languages are very close to
hardware description languages (HDLs), and their compilation to circuits is quite
easy (see, e.g., [RH91]). The translation into circuits of ESTEREL was a much
more difficult task, but the result is more interesting, since ESTEREL is of much
higher level than usual HDLs for describing controllers. The translation proposed

10

in [Ber92] is structural, and must be completed by deep optimizations, using both
standard CAD tools [SSL+92], and specific techniques [STB96,STB97] that take
advantage of knowledge coming from the structure of the source code.

5 V e r i f i c a t i o n o f S y n c h r o n o u s P r o g r a m s

Since synchronous programming is mainly devoted to the field of critical embed-
ded systems, the formal verification of synchronous programs is a particularly
important goal. By chance, it can take advantage of some specific features of the
application field and of the synchronous model:

- Experience shows that critical properties that must be verified are generally
simple, sa]ety properties. By "simple properties", we mean logical depen-
dency relations between events, in contrast with deep arithmetic properties.
As a consequence, these properties can often be model-checked on an ab-
straction of the program [Ha194], the most natural of which is the control
automaton generated by the earlier versions of the compilers (see §4.2).

- The control automaton, being obtained as a synchronous product, is gener-
ally much smaller that models obtained by asynchronous composition (no
interleaving, no need for partial orders, . . .).

- The transition relation is a vectorial]unction, which allows particularly effi-
cient BDD-based techniques [CBM89a] to be applied for the symbolic con-
struction of the reachable state space.

- Thanks to the synchronous model, a specific approach can be applied to
express safety properties by means of synchronous observers, i.e., special
programs possibly written in the same language as the program under veri-
fication.

The verification methods for synchronous programs are all based on the control
automaton.
Reduction methods have been applied [dSR94], mainly to automata compiled
from ESTEREL: using the tools AUTO/AUTOGRAPH [RdS90] reduced views of
the automaton can be obtained and compared.
Other methods are based on model-checking [QS82,CES86], and mainly symbolic
model-checking [CBM89b,BCM+90]. TEMPEST [JPV95] is a model-checker of
temporal logic formulas dedicated to ESTEREL. SIGALI [LDBL93] model-checks
SIGNAL programs, using the symbolic resolution of SIGNAL clocks constraints.
The tool LESAR [HLR92] is a symbolic, BDD-
based, model-checker of LUSTRE programs; it
is based on the use of synchronous observers,
to describe both the property to be checked
and the assumptions on the program envi-
ronment under which these properties are in-
tended to hold: an observer of a safety prop-
erty is a program, taking as inputs the in-
puts/outputs of the program under verifica-
tion, and deciding (e.g., by emitting an alarm

F
L

1]

signal) at each instant whether the property is violated. Running in parallel the
program, P, an observer • of the desired property, and an observer A of the
assumption made about the environment one has just to check that either the
alarm signal of • is never emitted (property satisfied) or the alarm signal of
A is emitted (assumption violated), which can be done by a simple traversal
of the reachable states of the compound program. Besides this only need of
considering reachable states (instead of paths) this specification technique has
several advantages:

- observers are written in the same language as the program under verification;
- observers are executable; they can be tested, or even kept in the actual im-

plementation (redundancy, autotest).

Notice that, with an asynchronous language, observers would have to be explic-
itly synchronized with the program under verification, with the risk of changing
its behavior. For an application of this technique, see also [WNT96].

Taking into account some numerical aspects - - in particular delay counting
- - is considered in [HPR97], using abstract interpretation techniques [CC77]. In
[LHR97], observers and abstract intepretation are used for verifying parameter-
ized networks of synchronous processes.

6 Other Related Topics

[Le94] is an interesting comparative study of formal description techniques, in-
cluding synchronous languages. This section lists some other works related to
synchronous programming.

P r o g r a m tes t ing will remain a validation technique complementary to for-
mal verification. The automatic testing of synchronous programs is studied
in [MHMM95,TMC94,OP94,NRW98].

In t eg ra t ion of s y n c h r o n o u s / a s y n c h r o n o u s aspects: In general, only some
parts of a complex system can be suitably described in the synchronous model.
The language ELECTRE [CR95] is devoted to the synchronous control of asyn-
chronous tasks. CRP [BSR93] allows ESTEREL modules to be composed asyn-
chronously.

Combina t i on of formal isms: Data-flow and imperative synchronous lan-
guages are complementary, and several attempts have been made, either to
combine them [JLRM94], or to introduce imperative concepts in data-flow lan-
guages [RM95,MR98]. The most advanced work on combining synchronousa lan-
guages is probably the "SYNCHRONIE WORKBENCH 9'', developped at GMD.

Higher order data-f low languages: Data-flow synchronous languages can be
viewed as lazy functional languages working on infinite sequence. "Lucid syn-
chrone" [Cas93,CP95,CP96] is a higher order extension of LUSTRE, where the
synchronous execution (bounded memory) is preserved.

9 See http://set.gmd.de/EES/synchronie/swb.html.

12

Aknowledgements: I hope all prominent contributors to synchronous languages
have been properly cited. However, the theses on the subject are not referenced,
because most of them are written in French. Nevertheless, I would like to aknowl-
edge the significant contribution of the following studentsl°:

P. Amagb4gnon, M. Belhadj, J.-L. Bergerand, R. Bernhard, C. Boden-
nec, F. Boniol, A. Bouali, B. Ch4ron, L. Cosserat, E. Coste-Maniere,
P. Couronn~, B. Dutertre, X. Fornari, D. Gaff4, G. Gherardi, A. Gi-
rault, G. Gonthier, A.-C. Glory, M. Jourdan, V. Lecompte, B. Le Goff,
D. Lesens, D. L'Her, O. Maff~is, H. Marchand, C. Mazuet, F. Mignard,
J.-P. Paris, I. Parissis, J. Plaice, C. Ratel, P. Raymond, A. Ressouche,
F. Rocheteau, V. Roy, J.-B. Saint, T. Shiple, J.-M. Tanzi, H. Toma,
D. Weber

References

[ADA83] ADA. The Programming Language ADA Re]erenee Manual. LNCS 155,
Springer Verlag, 1983.

[AG96] C. Andr4 and D. Gaff4. Proving properties of GRAFCET with synchronous
tools. In IEEE-SMC'96, Computational Engineering in Systems Applica-
tions, Lille, France, July 1996.

lAnd96] C. Andr4. Representation and analysis of reactive behaviors: a synchronous
approach. In IEEE-SMC'96, Computational Engineering in Systems Ap-
plications, Lille, France, July 1996.

lAW85] E.A. Ashcroft and W. W. Wadge. LUCID, the data-flow programming
language. Academic Press, 1985.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270-1282, September
1991.

[BCG88] G. Berry, P. Couronn4, and G. Gonthier. Synchronous programming of
reactive systems, an introduction to ESTEREL. In K. Fuchi and M. Nivat,
editors, Programming of Future Generation Computers. Elsevier Science
Publisher B.V. (North Holland), 1988. INRIA Report 647.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 10 ~° states and beyond. In Fifth IEEE Symposium
on Logic in Computer Science, Philadelphia, 1990.

[BdS96] F. Boussinot and R. de Simone. The SL synchronous language. IEEE
Transactions on Software Engineering, 22(4):256-266, April 1996.

[Ber89] G. Berry. Real time programming: Special purpose or general purpose
languages. In IFIP World Computer Congress, San Francisco, 1989.

[Ber92] G. Berry. Esterel on hardware. Philosophical Transactions Royal Society
of London, 339:217--248, 1992.

[Ber93] G. Berry. Preemption and concurrency. In Proc. FSTTCS 93, Lecture
Notes in Computer Science 761, pages 72-93. Springer-Verlag, 1993.

[Ber95] G. Berry. The constructive semantics of esterel. Draft book available
by ftp at ftp://lip-sop, inria, fr/meije/esterel/papers/constructi-

veness .ps. gz, 1995.

1o Of course, most of them are no longer students!

13

[Ber98]

[BFH+92]

[BG92]

[BL90]

[Bli90]

[Bon951

[Bou91]

[BS91]

[BSR93]

[Cas93]

[CBMS9a]

[CBM89b]

[cc77]

[CES86]

[CG95]

[CGP94]

[CLM91]

[Coh96]

G. Berry. The foundations of Esterel. In C. Stirling G. Plotkin and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press, 1998.
A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-
tel. Minimal state graph generation. Science of Computer Programming,
18:247-269, 1992.
G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Program-
ming, 19(2):87-152, 1992.
A. Benveniste and P. LeGuernic. Hybrid dynamical systems theory and the
SIGNAL language. IEEE Transactions on Automatic Control, 35(5):535-
546, May 1990.
Blif-MV: An interchange format for design verification and synthesis. Tech-
nical report, Berkeley Logic Synthesis Group, 1990.
F. Boniol. Synchronous communicating reactive processes. In 2nd AMAS T
Workshop on Real-Time Systems, Bordeaux, June 1995.
F. Boussinot. Reactive C: An extension of C to program reactive systems.
Software Practice and Experience, 21(4):401-428, 1991.
F. Boussinot and R. de Simone. The ESTEREL language. Proceedings of
the IEEE, 79(9):1293-1304, September 1991.
G. Berry, R. K. Shyamasundar, and S. Ramesh. Communicating reac-
tive processes. In Proc. 20th A CM Conf. on Principles of Programming
Languages, POPL '93, Charleston, Virginia, 1993.
P. Caspi. Lucid synchrone. In International Workshop on Principles of
Parallel Computing (OPOPAC), November 1993.
O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential ma-
chines using boolean functional vectors. In L. J. M. Claesen, editor, Formal
VLSI Correctness Verification. North-Holland, November 1989.
O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In International Work-
shop on Automatic Verification Methods for Finite State Systems, Greno-
ble. LNCS 407, Springer Verlag, 1989.
P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In 4th A CM Symposium on Principles of Programming Languages,
POPL'77, Los Angeles, January 1977.
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. A CM
TOPLAS, 8(2), 1986.
P. Caspi and A. Girault. Execution of reactive distributed systems. In
EURO-PAR'95 Stockholm, volume 966 of LNCS. Springer Verlag, August
1995.
P. Caspi, A. Girault, and D. Pilaud. Distributing reactive systems. In
Seventh International Conference on Parallel and Distributed Computing
Systems, PDCS'94, Las Vegas, USA, October 1994. ISCA.
E. M. Clarke, D. E. Long, and K. L. McMillan. A language for compo-
sitional specification and verification of finite state hardware controllers.
Proceedings of the IEEE, 79(9):1283-1292~ September 1991.
N. H. Cohen. ADA as a second langguage. McGraw-Hill Series in Computer
Science, 1996.

14

[CP95]

[CP96]

[CPHP87]

[CR95]

[cs95]

[dSR94]

[Hal93]

[Hal94]

[Har87]

[HCRP91]

[HLR92]

[HM951

[HP85]

[HPR97]

[HRR91]

[IEE91 l

[JLRM94]

P. Caspi and M. Pouzet. A functional extension to LUSTRE. In Eighth
International Syrup. on Languages .for Intensional Programming, ISLIP'95,
Sidney, May 1995.
P. Caspi and M. Pouzet. Synchronous Kahn networks. In Int. Conf. on
Functional Programming, Philadelphia. ACM SIGPLAN, May 1996.
P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: a declarative
language for programming synchronous systems. In 14th A CM Symposium
on Principles of Programming Languages, POPL'87, Munchen, January
1987.
F. Cassez and O. Roux. Compilation of the ELECTRE reactive laaguage
into finite transition systems. Theoretical Computer Science, 144, June
1995.
C2A-SYNCHRON. The common format of synchronous languages - The
declarative code DC. Technical report, Eureka-SYNCHRON Project, Oc-
tober 1995.
R. de Simone and Annie Ressouche. Compositional semantics of ESTEREL
and verification by compositional reductions. In CAV'94, Stanford, June
1994.
N. Halbwachs. Synchronous programming of reactive systems. Kluwer
Academic Pub., 1993.
N. Halbwachs. About synchronous programming and abstract interpreta-
tion. In B. LeCharlier, editor, International Symposium on Static Analysis,
SAS'94, Namur (Belgium), September 1994. LNCS 864, Springer Verlag.
D. Harel. Statecharts: A visual approach to complex systems. Science of
Computer Programming, 8(3), 1987.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305-1320, September 1991.
N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time systems by means of the synchronous data-flow programming lan-
guage LUSTRE. IEEE Transactions on Software Engineering, Special Issue
on the Specification and Analysis of Real-Time Systems, September 1992.
N. Halbwachs and F. Maraninchi. On the symbolic analysis of combina-
tional loops in circuits and synchronous programs. In Euromicro'95, Como
(Italy), September 1995.
D. Harel and A. Pnueli. On the development of reactive systems. In Logic
and Models of Concurrent Systems, NATO Advanced Study Institute on
Logics and Models for Verification and Specification of Concurrent Sys-
tems. Springer Verlag, 1985.
N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time
systems using linear relation analysis. Formal Methods in System Design,
11(2):157-185, August 1997.
N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from
data-flow programs. In Third International Symposium on Programming
Language Implementation and Logic Programming, Passau (Germany), Au-
gust 1991. LNCS 528, Springer Verlag.
Aaother look at real-time programming. Special Section of the Proceedings
of the IEEE, 79(9), September 1991.
M. Jourdan, F. Lagnier, P. Raymond, and F. Maraninchi. A multiparadigm
language for reactive systems. In 5th IEEE International Conference on
Computer Languages, Toulouse, May 1994. IEEE Computer Society Press.

15

[JPV951

[Kah74]

[KauT0]

[LDBL93]

[Le941

[LGLL91]

[LHR97]

[LM931

[LSSS91]

[Ma193]

[Mar921

[MH96]

[MHMM95]

[Mi1811

[Mi183]
[ML94]

[MR98]

[NRW98]

L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety property
verification of ESTEREL programs and applications to telecommunication
software. In P. Wolper, editor, 7th International Conference on Com-
puter Aided Verification, CAV'95, Liege (Belgium), July 1995. LNCS 939,
Springer Verlag.
G. Kahn. The semantics of a simple language for parallel programming.
In IFIP 74. North Holland, 1974.
W. H. Kautz. The necessity of closed loops in minimal combinatorial
circuits. IEEE Trans. on Computers, pages 162-164, 1970.
M. Le Borgne, Bruno Dutertre, Albert Benveniste, and Paul Le Guernic.
Dynamical systems over Galois fields. In European Control Conference,
pages 2191-2196, Groningen, 1993.
C. Lewerentz and Th. Lindner (eds.). Case Study "Production Cell":
a Comparative Study in Formal Software Development. FZI-Publikation
940001, ISSN 0944-3037, Forschungszentrum Informatik, Karlsruhe, 1994.
P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming
real time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321-
1336, September 1991.
D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of
parameterized linear networks of processes. In 24th ACM Symposium on
Principles of Programming Languages, POPL '97, Paris, January 1997.
P. LeParc and L. Marc~. Synchronous definition of Grafcet with Signal.
In IEEE SMC'93, 1993.
C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The SynDEx
software environment for real-time distributed systems design and imple-
mentation. In European Control Conference, ECC'91, July 1991.
S. Malik. Analysis of cyclic combinational circuits. In ICCAD'93, Santa
Clara (Ca), 1993.
F. Maraninchi. Operational and compositional semantics of synchronous
automaton compositions. In CONCUR'92, Stony Brook, August 1992.
LNCS 630, Springer Verlag.
F. Maraninchi and N. Halbwachs. Compiling Argos into boolean equa-
tions. In Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT), Uppsala (Sweden), September 1996. LNCS 1135, Springer Ver-
lag.
M. Miillerburg, L. Holenderski, O. Maffeis, and M. Morley. Systematic

testing and formal verification to validate reactive programs. Softaware
Quality Journal, 4(4):287-307, 1995.
R. Milner. On relating synchrony and asynchrony. Technical Report CSR-
75-80, Computer Science Dept., Edimburgh Univ., 1981.
R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3), July 1983.
O. Maffeis and P. Le Guernic. Distributed implementation of SIGNAL:
scheduling and graph clustering. In 3rd InternationI Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems. LNCS 863, Springer
Verlag, September 1994.
F. Maraninchi and Y. R~mond. Mode-automata: About modes and states
for reactive systems. In European Symposium on Programming, ESOP'98,
Lisbon, April 1998.
X. Nicollin, P. Raymond, and D. Weber. Automatic testing of reactive
programs. In preparation 1998.

16

[OP941

[Per93]
[PP83]

[PS87]

[QS82]

[Ray96]

[RdS90]

[RH91]

[RM95]

[SBT96]

[SSL+92]

[STB96]

[STB97]

[Sto92]

[TMC94]

[vdB94]

[WNT96]

F. Ouabdesselam and I. Parissis. Testing synchronous critical software.
In 5th International Symposium on Software Reliability Engineering (IS-
SRE'94), Monterey, USA, November1994.
D. Perry. VHDL. McGraw-Hilt, 1993.
N.S. Prywes and A. Pnueli. Compilation of nonprocedural specifications
into computer programs. IEEE Transactions on Software Engineering,
SE-9(3), May 1983.
J. A. Plaice and J-B. Saint. The LUSTRE-ESTEREL portable format. Un-
published report, INRIA, Sophia Antipolis, 1987.
J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In International Symposium on Programming. LNCS
137, Springer Verlag, April 1982.
P. Raymond. Recognizing regular expressions by means of dataflows net-
works. In 23rd International Colloquium on Automata, Languages, and
Programming, (ICALP'96) Paderborn, Germany. LNCS 1099, Springer
Verlag, July 1996.
V. Roy and R. de Simone. Auto and Autograph. In R. Kurshan, editor,
International Workshop on Computer Aided Verification, Rutgers (N.J.),
June 1990.
F. Rocheteau and N. Halbwachs. Implementing reactive programs on
circuits, a hardware implementation of LUSTRE. In REX Workshop on
Real-Time: Theory in Practice, DePlasmolen (Netherlands), pages 195-
208. LNCS 600, Springer Verlag, June 1991.
E. Rutten and F. Martinez. SIGNALGTI, implementing task preemption
and time interval in the synchronous data-flow language SIGNAL. In 7th
Euromicro Workshop on Real Time Systems, Odense (Denmark), June
1995.
T. R. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic
circuits. In International Design and Testing Conference IDTC'96, Paris,
France, 1996.
E. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Aldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
SIS: a system for sequential circuit synthesis. Technical report memoran-
dum nr. ucb/erl m92/41, University of California at Berkeley, 1992.
E. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits gen-
erated from high-level descriptions. In ICCAD'96, November 1996.
E. Sentovich, H. Toma, and G. Berry. Efficient latch optimization using
incompatible sets. In 3~th Design Automatio Conference, June 1997.
L. Stok. False loops through resource sharing. In ICCAD'92, Santa Clara
(Ca), 1992.
P. Thevenod-Fosse, C. Mazuet, and Y. Crouzet. On statistical testing of
synchronous data flow programs. In 1st European Dependable Computing
Conference (EDCC-1), pages 250-67, Berlin, Germany, 1994.
M. vonder Beeck. A comparison of Statecharts variants. In FTRTFT.
LNCS 863, Springer Verlag, 1994.
M. Westhead and S. Nadjm-Tehrani. Verification of embedded systems
using synchronous observers. In FTRTFT'96, Uppsala, September 1996.
LNCS 1135.

