

Seminar über Algorithmen

Kombinatorische Algorithmen zur Berechnung von Marktequilibria

Übersicht

- 1. Marktmodelle und Gleichgewichtsdefinition
- 2. Das Eisenberg-Gale-Programm (EG)
- 3. Kombinatorische Bestimmung des Optimums von EG
- 4. Schlussbetrachtung

Marktmodelle und Gleichgewichtsdefinition

Definition:

Ein Fisher-Markt besteht aus einer Menge von unterscheidbaren und teilbaren Produkten A, einer Menge von Käufern B. Jeder der Käufer hat ein Startguthaben in Höhe von e_i.

Jedes Produkt ist eine Stückzahl in Höhe von b, verfügbar.

Jeder Käufer versucht eine konkave Nutzfunktion u, zu maximieren.

Definition:

Ein Marktgleichgewicht ist ein Preisvektor $p=(p_1,\ldots,p_n)^{\top}\in\mathbb{R}^n_+$, sodass für jeden Käufer eine Produktmenge $x_i^*=(x_{i1}^*,\ldots,x_{in}^*)^{\top}\in\mathbb{R}^n_+$ existiert und die folgenden beiden Bedingungen erfüllt sind:

- 1. x_i^* maximiert ui(x) mit Rücksicht auf Budgetbeschränkung $p \cdot x \leq e_i$
- 2. Für jedes Produkt j gilt: $\sum_{i=1}^{m} x_{ij}^* = b_j$

Unsere Einschränkung:

Die Nutzenfunktion ist linear:
$$u_i(x) = \sum_{j=1}^n u_{ij} x_{ij}$$

Das Eisenberg-Gale-Programm (EG)

Das primale Programm (EG)

$$\max \sum_{i=1}^{m} e_i \log u_i$$

$$\min u_i = \sum_{j=1}^{n} u_{ij} x_{ij} \qquad \forall i \in B$$

$$\text{unter Nb.} \sum_{i=1}^{m} x_{ij} \le 1 \qquad \forall j \in A$$

$$\text{und Vzb.} \quad x_{ij} \ge 0 \qquad \forall i \in B, \forall j \in B$$

Wir setzen voraus, dass zu jedem Produkt j ein potenzieller Käufer existiert, also $u_{ij} > 0$.

Das duale Lagrange-Programm (EG_D)

$$\max_{p} L(x, p) = -\sum_{i=1}^{m} e_{i} \log u_{i} + \sum_{j=1}^{n} p_{j} f_{j}(x)$$

$$\min u_{i} = \sum_{j=1}^{n} u_{ij} x_{ij} \qquad \forall i \in B$$

$$f_{j}(x) = (\sum_{i=1}^{m} x_{ij}) - 1 \qquad \forall j \in A$$

$$\text{unter Vzb.} \quad p_{i} \geq 0$$

Karush-Kuhn-Tucker-Bedingungen

Hinreichende Bedingungen für primal und dual optimale Lösungen von konvexen Programmen (bei starker Dualität)

Für EG und EG lässt sich aus ihnen ableiten:

(i)
$$\forall j \in A : p_j \ge 0$$

(ii)
$$\forall j \in A: p_j > 0 \Rightarrow \sum_{i=1}^m x_{ij} = 1$$

(iii)
$$\forall j \in A : p_j > 0 \Rightarrow \sum_{i=1}^m x_{ij} = 1$$

(iii) $\forall i \in B \ \forall j \in A : \frac{u_{ij}}{p_j} \le \frac{\sum_{j \in A} u_{ij} x_{ij}}{e_i}$

(iv)
$$\forall i \in B \ \forall j \in A : x_{ij} > 0 \Rightarrow \frac{u_{ij}}{p_j} = \frac{\sum_{j \in A} u_{ij} x_{ij}}{e_i}$$

Marktgleichgewicht als Lösung von EG und EG

Aus diesen 4 Bedingungen folgt:

- Alle Preise sind positiv und alle Güter können verkauft werden.
- Jeder Käufer erhält optimale Menge von Gütern.
- Das Guthaben aller Käufer wird vollständig aufgebraucht.

Grundidee des Algorithmus

Abschwächung von Bedingung (iii) und (iv) zu:

(iii')
$$\forall i \in B, \forall j \in A: \frac{u_{ij}}{p_j} \leq \frac{\sum_{j \in A} u_{ij} x_{ij}}{m_i}$$
(iv') $\forall i \in B, \forall j \in A: x_{ij} > 0 \Rightarrow \frac{u_{ij}}{p_j} = \frac{\sum_{j \in A} u_{ij} x_{ij}}{m_i}$

(iv')
$$\forall i \in B, \forall j \in A: x_{ij} > 0 \Rightarrow \frac{u_{ij}}{p_j} = \frac{\sum_{j \in A} u_{ij} x_{ij}}{m_i}$$

Kontinuierliche Verringerung der Verletzung der Nebenbedingungen bis alle KKT-Bedingungen erfüllt sind.

Konkrete Berechnung des Optimums von EG und EG, durch Berechnung von maximalen Netzwerkflüssen.

Definition: Maximalnutzen pro Einheit Geld

Sei der Preisvektor *p* gegeben. Der Maximalnutzen pro Einheit Geld ist eines Käufers *i* ist:

$$\alpha_i = \max_j \{\frac{u_{ij}}{p_j}\}$$

Definition: Equality subgraph

Seien A die Menge der Produkte, B die Menge der Käufer sowie α_i für $1 \le i \le m$. Der Equality subgraph G = (V, E) ist definiert durch:

$$V = A \cup B$$
$$E = \{(a, b) \mid \frac{u_{ij}}{p_j} = \alpha_i\}$$

Definition:

Basierend auf dem Equality subgraph definieren wir das Flussnetzwerk N(p) wie folgt:

$$V = \{s\} \cup A \cup B \cup \{t\}$$
 mit Quelle s und Senke t

$$E = \{(s,b) \mid a \in A\} \cup \{(a_j,b_i) \mid \frac{u_{ij}}{p_j} = \alpha_i\} \cup \{(b,t) \mid b \in b\}$$

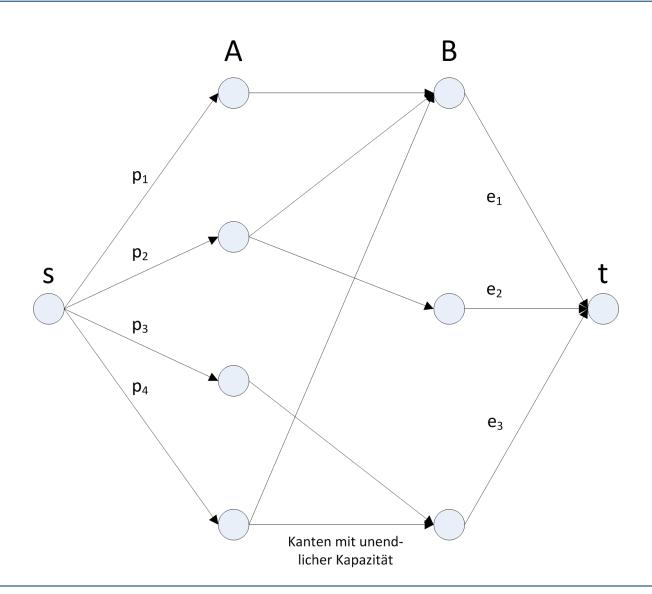
Kapazitäten:

$$c(s, a_j) = p_j$$
 für $a_j \in A$

$$c(b_i, t) = e_i$$
 für $b_i \in B$

$$c(a_j,b_i) = \infty \quad \text{ für } \quad (a_j,b_i) \in \{(a_j,b_i) \mid \frac{u_{ij}}{p_j} = \alpha_i\}$$

Flussnetzwerk N(p)



"Jeder Preisvektor p gewährleistet, dass der Schnitt $(\{s\}, A \cup B \cup \{t\})$ minimal in N(p) ist."

Sie stellt sicher, dass Gleichgewichtspreise zu keinem Zeitpunkt überschritten werden.

Käufer können jedoch einen Überschuss haben.

Balancierte Flüsse: Definitionen

Definition: Überschuss

Seien ein Flussnetzwerk N gegeben, dass die Invariante erfüllt. Sei weiterhin f ein Fluss in diesem Netzwerk und R(f) der Restgraph bezüglich dieses Flusses.

- Der Überschuss von Käufer i, bezeichnet als $\gamma_i(N,f)$ ist die Restkapazität der Kante (i,t) mit Rücksicht auf f.
- Der Überschussvektor bezüglich N ist $\gamma(N,f):=(\gamma_1(N,f),\ldots,\gamma_n(N,f))$.

Definition: Balancierter Fluss

Ein balancierter Fluss in N ist ein Fluss, der die L2-Norm $\|\gamma(N,f)\|$ des Überschussvektors minimiert.

Balancierte Flüsse: Algorithmus

Gegeben: Flussnetzwerk N, sodass Invariante erfüllt ist

- 1. Reduziere Kapazitäten aller Kanten von B nach t bis die Kapazität des Schnittes $(\{s\} \cup A \cup B, \{t\})$ gleich der Kapazität des Schnittes $(\{s\}, A \cup B \cup \{t\})$ ist. Sei N' das resultierende Netzwerk und f' ein maximaler Fluss in N'.
- 2. Finde einen maximalen min-s-t-cut (S,T) mit $s \in S$ und $t \in T$ in N'.

Fall 1:
$$T = \{t\}$$

Finde maximalen Fluss in N' und gib ihn aus.

Fall 2: Sonst.

Finde rekursiv balancierte Flüsse f_1 und f_2 in den Teilnetzwerken

- N_1 ... mit Knoten nur aus $S \cup \{t\}$
- N_2 ... mit Knoten nur aus $T \cup \{s\}$

Gib $f = f_1 \cup f_2$ zurück.

Balancierte Flüsse: Algorithmus

Satz:

Der vorgestellte Algorithmus berechnet einen balancierten Fluss in N.

Beweisskizze:

Sei der berechnete Fluss f gegeben.

f ist maximaler Fluss

- Bei Terminierung in Fall 1:
 Schnitt 2 ist minimaler Schnitt mit gleicher Kapazität wie Schnitt 1.
- Bei Terminierung in Fall 2:
 f sättigt alle Kanten von s nach A in N und muss daher maximal sein.

f ist balanciert

- Kann durch Induktion über Tiefe der Rekursion gezeigt werden.

Nachbarschaften & feste Mengen

Definition: Nachbarschaft

Sei das Flussnetzwerk N(p) gegeben und sei $S\subseteq A$. Die Nachbarschaft von S in N(p) ist:

$$\Gamma(S) = \{ j \in B \mid \exists i \in S \text{ mit } (i, j) \in N(p) \}$$

Definition: Feste Menge

Sei N(p) gegeben. Bezeichne außerdem p(S) den Gesamtwert der Produkte in S (die Summe ihrer Preise) und bezeichne analog m(T) das Gesamtvermögen einer Teilmenge $T\subseteq B$ von Käufern. S wird als feste Menge bezeichnet, gdw. $p(S)=m(\Gamma(\overline{S}))$.

Hauptalgorithmus

Initialisierung des Preisvektors:

- Setze $p_i=\frac{1}{n}$ für $1\leq i\leq m$. Berechne α_i für $1\leq i\leq n$ und das daraus resultierende Netzwerk N(p). Reduziere den Preis von Produkt j auf $p_j=\max_i\{\frac{u_{ij}}{\alpha_i}\}$, falls es keine inzidente Kante in N(p) hat.

Lauf des Algorithmus ist in Phasen unterteilt.

- Am Ende jeder Phase wird eine neue Menge fest.
- Jede Phase beinhaltet eine Reihe von Iterationen zur Preiserhöhung.

Hauptalgorithmus: Ablauf einer Phase

- 1. Berechnung eines balancierten Flusses f im aktuellen Netzwerk N(p).
- 2. Falls der Flussalgorithmus in Fall 1 endet:
 Gib den Preisvektor p und die Produktverteilung x zurück.
 Sonst: Fahre fort.
- 3. Iterative Preiserhöhung

Hauptalgorithmus: Ablauf einer Iteration

Setze:

- δ = maximaler Überschuss der Käufer mit Rücksicht auf f
- I = Teilmenge der Käufer B mit Überschuss δ
- $J \subseteq A$ Produkte mit Kanten zu I in N(p)

Beginne mit $\Delta_0=1$ und erhöhe in jeder Iteration Δ_i um einen kleinen Wert bis für $p_i=\Delta_i\cdot p$ und $N(p_i)$ eines der beiden folgenden Ereignisse eintritt:

(a) Eine Teilmenge $S \subseteq J$ wird fest:

i+1 fort.

- Fahre mit der nächsten Phase fort.
- (b) Neue Kante (i,j) mit $i \in I$ und $j \in A \setminus J$ tritt in Eq. subgraph ein:
 - Füge Kante (i,j) zu N(p) hinzu berechne einen balancierten Fluss f.
 - Falls Flussalgorithmus in Fall 1 terminiert:
 Gib Preisvektor p und Produktverteilung x zurück.
 - Sonst: Bestimme Menge B' aller Käufer mit gerichtetem Pfad zu Käufern aus I. Setze I:=B' und $J=\{j\mid j\in A;\ j\ \mathrm{hat}\ \mathrm{Kante}\ \mathrm{zu}\ i\in I\ \mathrm{in}\ N(p)\}$ und fahre mit Iteration

Dieser Algorithmus berechnet ein Marktgleichgewicht in

$$\mathcal{O}(n^4(\log n + n\log U + \log M))$$

Berechnungen von maximalen Netzwerkflüssen mit

$$U = \max_{i \in B, j \in A} \{u_{ij}\}$$

($M = Summe \ der \ Gelder \ aller \ K \ddot{a}ufer$)

Allgemeiner: Arrow-Debreu-Tauschökonomien

- Marktteilnehmer sind allgeimeine "Händler"
- Ziel: Preise finden, sodass jeder Händler
 - seine Waren vollständig verkauft
 - eine bzgl. der Nutzenfunktion optimale Warenmenge erhält

Spezieller: Ressourcenverteilungsmärkte

- Gegeben
 - Menge von Resourcen $extit{R}$ mit verfügbaren Kapazitäten $c:R o\mathbb{Z}^+$
 - Menge von Marktteilnehmern $A = \{a_1, \dots, a_n\}$
 - Jeder Marktteilnehmern i verfügt über Geldmenge $m_i \in \mathbb{Z}^+$.
- Jeder von ihnen
 - kann bestimmte Objekte $V\subseteq \mathcal{P}(R)$ produzieren.
 - versucht so viele Objekte aus V wie möglich herzustellen.

Fragen und Diskussion

Danke.