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1 Introduction

1.1 What is a Prediction Market?

Prediction markets are defined as analytical markets that aim to create predictions for a future
event; e.g., in 2008, intrade.com provided bets on whether avian flu will hit the US [1]. The outcome
can be either true or false, and the participants or traders in prediction markets can be anonymous.
The difference compared to a financial security market is that the consumption of security value has
no affect on buyers (traders)—buyers (traders) only want to buy a security in order to make a profit.
The outcome of a combinatorial space for betting on n horses in a horse race might be n!. A bet
can be; e.g., “horse A beats horse B”. In most cases, a bet becomes intractable and results in high
computation costs [4]. This cost is referred to as “the auctioneer’s matching problem” (Section 2.2).

The growth of prediction markets was inspired by the development of the Logarithmic Market
Scoring Rule (LMSR) by Hanson [3] (which serves as a pricing mechanism called “automated
market-maker”, see Section 3). The automated market-maker is used to determine and post prices
for all possible states. This allows the market organizer (or auctioneer) to promptly post prices for
all states rather than to expect traders to post orders like in a continuous double auction.

In 2006, an additional mechanism called the share-ratio Dynamic Pari-mutuel Market-Maker
(DPM) was built by Pennock et al. [4]. This mechanism also serves as an automated market-maker
with controlled risk to the auctioneer. A prediction market that uses this mechanism is the Yahoo!
Tech Buzz Game, whereas other online prediction markets; e.g., the TheWSX and InklingMarkets
use LMSR [5].

Prediction Market Definition: Pennock et al. [4] state that “a prediction market is one
mechanism designed to solve the information aggregation problem”. The prediction market involves
the aggregator (an individual) and the informants (a number of individuals). In this case, the
aggregator creates a financial security and invites the informants to trade said security.

Definition 1. Given Ω represents a set of all possible states of the world, ω ∈ Ω represents the
state of the world that happened exactly once at a certain point in time, an agent i may have partial
information about the true state of Ω, however it is unnecessary to know its true state. We represent
agent i′s information using a partition πi of Ω. In other words, a collection {πi1, πi2, ..., πik} is a
subset of Ω; i.e., the different subsets are disjoint and their union yields Ω. The agent i knows in
which subset of its partition the true state exists, however he does not know which member is the true
state. Given n agents 1, 2, ..., n, their combined information π̂ is the coarsest common refinement of
the partition {π1, π2, ..., πn} [4].

Figure 1 illustrates an example of eight states of Ω (ω1, ω2, ..., ω8). The events X1, X2, and
X3 represent subsets of states (ω). The 1′s partition π1 is {{ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}}. The
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coarsest common refinement π̂ = Ω. We write ωX1X2X3 to indicate that the states X1, X3 are true
when the state X2 is false.
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Figure 1: An overview of Partition model of knowledge. Source: [4]

2 Combinatorial Prediction Markets
This section aims to report the complexity of operating combinatorial markets. Suppose ε is some
finite set of base event and these events are linearly independent—the value (true or false) cannot
be determined with certainty; e.g., the proposition “the price of an apple is greater than 1 Euro”
might be true or false in the future. Then, the size of the state space Ω is 2|ε|. We use the symbols
X1, X2, X3, .... to represent the individual Boolean event in ε.

2.1 Settings

Securities: We use φ and ψ to represent arbitrary boolean formulas– the securities are based
on the Boolean formulas (φ and ψ) over the set of a proposition (e.g., “the price of apple is greater
than 1 Euro”). We write Sφ|ψ to indicate that the owner of a security S is paid $1 if both φ and ψ
are true, and paid $0 if ψ is true but φ is false. The security is cancelled (the owner gets all money
back) iif ψ is false.

Orders: We use the letter “o” to represent an order. An order is defined in the form e.g.,
o := “q units of Sφ|ψ at price p per unit”. We call a buy order if q > 0, and a sell order if q < 0.
Furthermore, orders can be indivisible (must be accepted or rejected in full) or divisible (can
be accepted partially) [1]. The divisible order is referred as an agent that accepts the quantity
αq, ∀q ∈ (0; 1], whereas the indivisible order is referenced to as the agent will only accept exactly q
units or none. Additionally, every order o can be translated into a pay off vector γ. The payoff γω
(in state ω) is q ∗ 1ω∈ψ(1ω∈φ − P ), where 1ω∈E is the indicator function equaling 1 iff ω ∈ E and
zero otherwise. We write O = {oi} to represent the set of all orders and P = {γi} to represent the
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set of corresponding payoff vector. We (traders) place orders that specify the security, number of
shares to buy/sell, and the maximum/minimum price at which we are willing to buy/sell.

2.2 The auctioneer’s matching problem

Prediction markets provide traders with a feature to trade without risk. The auctioneer’s matching
problem lies in the determination of which orders to accept without any risk. Chen et al. [1] formulates
that the auctioneer’s matching problem as an integer programming problem for indivisible orders
and a linear programming problem for divisible orders. The auctioneer’s matching problem is
NP-hard [1, 4] for both orders. We can solve the auctioneer’s matching problem for divisible orders
in polynomial time using ellipsoid algorithm [1]. Fortnow et al. [2] show that we can compute the
matching problem for divisible orders in polynomial time when there are O(log m) events, but is
co-NP-complete for O(m) events, where m is the length of the description of all orders. On the
other hand, the matching problem for the indivisible orders is non trivial: it is NP-complete for
O(log m) events and

∑ p
2-complete for O(m) events.

3 Automated Market Makers
This section describes the mechanisms used to limit the exposure of the market maker as well
as to encourage informed traders to trade. It provides automated market maker algorithms: a
market scoring rules market maker and a dynamic-pari-mutuel market maker. This in contrast to a
traditional market that uses double auction or order books mechanisms, waiting for buyers/sellers
to arrive to trade in the market. Market makers on the other hand are agents that are ready to
trade without hesitation and provide high liquidity when the number of traders is low (market is
unpopular). The automated market makers are used to determine how the contracts are priced using
a “cost potential function C”. Pennock et al. [4] suggests three desirable properties that automated
market makers should have as follows:

• It should run a predictable or bounded loss

• Informed traders should have an incentive to trade whenever their information would change
the price

• After any trade, computing the new prices should be a tractable problem

The prediction market generates forecasts for a binary event with an outcome space Ω =
{Y es,No}. Many real-world prediction markets focus on such binary events; e.g., “whether the
price of an apple will be less than 1 Euro in 2015”, “whether people will stop smoking in 2050”, and
“whether cars will be sold more than bicycles in 2020”.

3.1 Market scoring rules market maker

The prediction market operates using a logarithmic market scoring rule (LMSR) to determine
the price in the market. The payments are determined by a cost function C(−→q ). The function
represent how much money has been collected within the market. Suppose the market contains |Ω|
mutually exclusive and exhaustive contracts (securities or shares). Let qi be the current number
of contracts(securities or shares) for outcome i that have been purchased. The current cost of
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purchasing x shares of the outcome i is C(q1, ..., qi + x ..., q|Ω|) − C(q1, ..., qi, ..., q|Ω|) dollars; i.e.,
C(−→q new)− C(−→q old).

The corresponding cost function C(−→q ) of the LMSR is determined by

C(−→q ) = b ln

∑
j

eqj/b


and the price function is ∂C/∂qj = eqj/b/

∑
k e

qk/b, where b is the free parameter used to control for
a market maker’s loss risk and the liquidity of the market. The LMSR pays a fixed $1 per share to
winning shareholders.

3.2 Dynamic-pari-mutuel market maker

Unlike a Market scoring rules market maker, a dynamic-pari-mutuel market maker (DPM) pays an
equal portion of the total amount wagered to winning shareholders [4]. In a pari-mutuel market
traders place wagers on which of two or more mutually exclusive and exhaustive outcomes will occur
at some time in the future. After the true outcome becomes known, all the money of traders with
the incorrect outcome is redistributed to the traders with the correct outcome, in direct proportion
to the amount they wagered. The market maker uses the share-ratio cost function as the mechanism
that sets the price and the securities. It is defined by:

C(−→q ) = k
√∑

j

q2
j

, where k is a free parameter and the corresponding price function is pj = kqj/
√∑

k q
2
k.

4 Distributed Computation through Markets
This section aims to present a simple market model and analyse its computational properties; e.g.,
what can it compute and how fast it can run. We first introduce a Boolean market model to compute
with a single security. Then, we give a short introduction on how bid and price can be adjusted.
Finally, we describe how many number of rounds it will take for market convergence.

4.1 Boolean Market Model:

Boolean network (BN) models have been used for modelling networks in which the node activity is
described by one of two states, 1 or 0. The edges of the network affect the rules that determine
the state transitions of the nodes. BN modelling allows the exploration of the dynamics of relevant
nodes and the prediction of their future states, as well as exploring the overall dynamics of the
network. This is especially useful for large networks like prediction markets where analysing the
global behaviour of the system and tracking the individual nodes is computationally intensive. The
BN approach has already been used to model a variety of real or artificial networks including,
artificial life, scale-free networks, genetic regulatory networks, and strongly disordered systems that
are common in physics, biology and neural networks.

Suppose we have n number of traders, the state space is Ω = {0, 1}n, each trader has a
single bit xi (also called input bit) of private information, and each agent i has a partition
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πi = {{x ∈ Ω|xi = 0}, {x ∈ Ω|xi = 1}}, where x denotes the vector (x1, ..., xn). We can use the
Boolean function f : {0, 1}n → {0, 1} to gain the value of combined information x. We setup a
security F that will pay $1 if f(x) = 1 and $0 otherwise. If the market is truly efficient, we expect
its equilibrium trading price to equal f(x).

Bid Format and Price Formulation: In a market, we have an agent i, a bid bi and a
quantity qi; i.e, i has a security of number of qi and bi amount of money available in the market.
The clearing price is p =

∑
i bi/

∑
i qi at each round of trade. At the end of the round, agent i holds

a quantity q′
i that is proportional to the money that has been bid ( q′

i = bi/p).

Example 1. Suppose a market m with two agents with private bits x1, x2. Each of four possible
values of x is 1/4. The security F is based on the OR function f(x) = x1 ∨ x2. Assume that agent 1
observed x1 = 0, then, P ((x1, x2) = (0, 0)) = P ((x1, x2) = (0, 1)) = 1/2. For this reason, the agent
1’s initial expectation of the value of F is 0,5, therefore we would bid b1 = 0.5 in the first round.
Suppose x2 = 1, then the posterior belief yields P ((x1, x2) = (0, 1)) = P ((x1, x2) = (1, 1)) = 1/2.

4.2 Convergence Time:

Let p∞ represents the clearing price at equilibrium and F denote the security. f(x) is a Boolean
function of the combined information x.

Definition 2. A function f : {0, 1}n → {0, 1} is a “weighted threshold function” iff there are real
constant ω0, ω1, ω2, ..., ωn; i.e.,

f(x) = 1 iff ω0 +
n∑
i=1

ωixi ≥ 1

Pennock et al. [4] introduces Theorems 3,4, and 5 to analyse the number of rounds taken in
the market to be converged (without prove).

Theorem 3. If f is a weighted threshold function, then for any prior probability distribution P , the
equilibrium price of F is equal to f(x).

Theorem 4. Let f be a weighted threshold function with n inputs, and let P be an arbitrary
probability distribution. Then, after at most n rounds of trading, the price reaches its equilibrium
values p∞ = f(x).

Theorem 5. There is a function Cn with 2n inputs and a prior distribution Pn such that, in the
worst case, the market takes n rounds to reveal the value of Cn(.).
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5 Summary
We have introduced a model of prediction markets with aggregate uncertainty, by characterizing the
uncertainty of market participant’s private information. We described prediction market mechanisms
which provide traders with the possibility to trade without risk. In most cases, the computation of
combinatorial space in prediction markets is intractable and causes high computation cost, which
introduces the so called auctioneer’s matching problem (NP-hard). Prediction markets use the
automated market to determine how the contracts (securities or shares) are priced using a “cost
potential function C”. Three desirable properties that automated market makers should have
are the following: (1) it should run a predictable or bounded loss, (2) informed traders should
have an incentive to trade whenever their information would change the price, and (3) after any
trade, computing the new prices should be a tractable problem. We described two mechanisms of
adjusting prices in the market using cost functions: a logarithmic market scoring rule (LMSR) and
a dynamic pari-mutuel market-maker (DPM). The first one pays a fixed amount per share, whereas
the second one pays an equal portion of the total amount wagered to winning shareholders. Finally,
we described how prediction market can be computed with a single security using a Boolean market
model. At n rounds of trading, the price converges at equilibrium p∞ = f(x).
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