

Reputation Systems

Seminar about algorithms 2013/2014

Adam Furmańczuk

adam.furmanczuk@fu-berlin.de

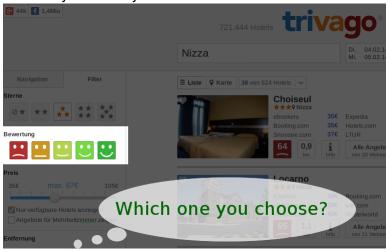
Prof. Dr. Wolfgang Mulzer
Email: mulzer@mi.fu-berlin.de
Vannik Stein
Email: yannik.stein@fu-berlin.de
Theoretical Computer Science
Computer Science Institute
Department of Mathematics and Computer Science
Freie Universität Berlin
http://www.inf.fu-berlin.de/inst/ag-ti/

Table of contents

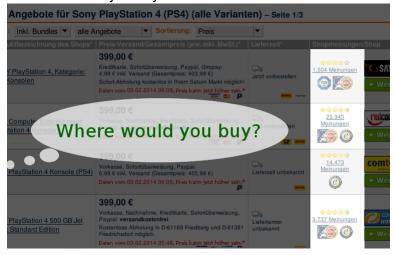
- motivation
- game theory and reputation systems
 - recall: grim strategy
 - reputational grim
- threats to reputation systems and solutions:
 - whitewashing
 - incorrect feedback
 - phantom feedback (sock puppet, sybil attack)
- conclusion

- Why reputation matters?
 - good rep → trust in ability and reliability in:
 - business (e-commerce, internet auctions)
 - education (researchers involve you more often in publications)
 - online communities (stackoverflow, specialized message boards..)
 - for technical matters (e.g. : rank peers in p2p systems)
 - act strategically thinking about history we generate
- active research topics at our university

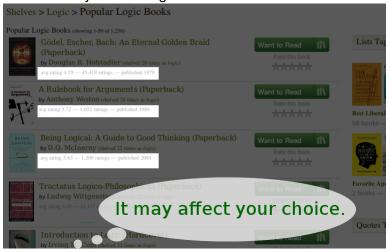
It affects your holidays:



It affects where you buy:

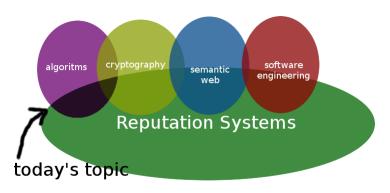


■ It influences your thinking:



Reputation Systems

■ Where do we research reputation systems?



Game theory

■ recall Nadja's talk on game strategy:

Tab. 2.1: Das Gefangenendilemma

		Wesson	
		Geständnis	Schweigen
Smith	Geständnis	(-4, -4)	(0,-10)
	Schweigen	(-10,0)	(-2, -2)

let's modify, so crime pays:

■ both cooperate: each gain 1

■ both cheat: each gain 0

■ one cooperates: cheater gain 2, other lose 1

- Let's play the grim strategy in an infinite model:
 - coopeate unless any player has cheated in previous round
 - lacktriangle both play grim ightarrow Subgame Perfect Nash Equilibrium (SPNE)
 - **payoff** at stage i: π_i^t
 - discount factor $\delta : 0 \le \delta \le 1$
 - discounted avg payoff: $\bar{\pi}_i = (1 \delta) \sum_{t=1}^{\infty} \delta^t \pi_i^t$

proof:

- consider single cheating at t=0:
- lacktriangledown ightarrow (cheat, cheat) for remaining roounds
- avg payoff: $(1 \delta)(2 + \delta * 0 + \delta^2 * 0 + ...) = 2(1 \delta)$
- when cooperating: $(1 \delta)(1 + \delta * + \delta^2 + ...) = 1$
- cheating not advantegous when $\delta \ge \frac{1}{2}$
- \blacksquare same argument for any period t > 0

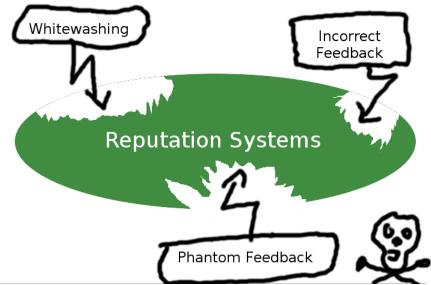
Reputational Grim

- now N players (N is even) get paired up at random
- each player starts with good rep
- may keep good rep when:
 - cooperate with good rep platers
 - cheat on players with bad rep
- \blacksquare when played by all players \to SPNE for $\delta \geq \frac{1}{2}$
- proof:
 - for cheater punishment is same as in full grim strategy

Personalized Grim

- history remembered but not shared
- player view game as seperated into N unrelated games
- SPNE for $\delta \ge 1 \frac{1}{2N}$

Threats to reputation systems:



Whitewashing:

- starting afresh with new pseudonym
- threat to previous games: cheat until bad rep and start afresh
- not desired

Whitewashing prevention:

- simple mean: use initiation fee f (upfront cost)
 - When is cheating to expansive?
 - cheating payoff:

$$\bar{\pi'} = (1 - \delta)(2 - f + \delta * (1 - f) + \delta^2 + \delta^3 + ...) = 2(1 - \delta)$$

- \blacksquare rep grim payoff: $\bar{\pi} = (1 \delta)(1 f + \delta + \delta^2 + ...)$
- for SPNE one needs $\bar{\pi} \geq \bar{\pi'} \rightarrow f \geq \frac{1}{\bar{\kappa}}$

Whitewashing prevention: Pay your dues (PYD) Freie Universität

Berlin

- allow veterans to cheat against newcommers
- PYD is most efficient equilibrium
- whitewashers are treated same as newcommers
 - **a** assume αN real newcommers arrive every period
 - \blacksquare when there are more αN newcomers, whitewasher present → extremely noise influenced (fragile)
 - **a** add "noise" to the model allowing *veteran* accidentally ($\epsilon > 0$) play D and return as whitewasher

Whitewashing prevention: other

- other strategies to prevent whitewashing include:
 - newcomers play only against newcomers
 - reveal true identities (Post-ident, etc)

Incorrect Feedback

- underprovision (not enough feedback available)
- dishonest or distorted feedback

Prevent Incorrect Feedback

- create incentive by rewarding feedback
- naive solution: compare reports to peers and reward agreement
 - problem: herding and information cascade
- peer prediction method

Modelling peer prediction

- Assumptions in model *truthful revelation*:
 - product quality constant (observed with error)
 - rater sends evaluation of product to center
 - center awards and punishes raters based on their msgs
 - no independent information available
 - raters risk neutral, try to maximize wealth
- each rater has perception of product (signal)
- no information on other raters signal

Simultaneous reporting game

- center asks rater to announce signal
- after receiving all signals information is shared
- center computes transfers

Simultaneous reporting: modelling details

- \blacksquare t = 1, ... T indexed types to be rated
- set of raters I; $|I| \ge 3$
- signals:
 - $S = \{s_1, ..., s_M\}$ possible signals
 - Sⁱ random signal received by rater i
 - signals distributed by:

$$f(s_m | t) = Pr(S^i = s_m | t);$$

 $\forall s_m, t : f(s_m | t) > 0 \land \sum_{m=1}^{M} f(s_m | t) = 1$

conditional distribution different for each type, e.g. :

	h	I
Н	$f(h \mid H) = 0.85$	$f(I \mid H) = 0.15$
L	$f(h \mid H) = 0.55$	$f(h \mid H) = 0.45$

$$\rightarrow$$
 $Pr(h) = 0.5 * 0.85 + 0.5 * 0.45 = 0.65$

Simultaneous reporting: more details

- announcements by *center*:
 - single announcment: $x^i \in S$
 - announcements for all *raters*: $x = \{x^1, ..., x^l\}$
 - rater i's announcment fo signal s_m : $x_m^i \in S$
 - rater i's announcment strategy: $\bar{x}^i = (\bar{x}_1^i..\bar{x}_M^1)$ announcment strategy vector: $\bar{x} = (\bar{x}^1,..,\bar{x}^l)$

 - \blacksquare strategy vector without *rater i*: \bar{x}^{-i}

transfer:

- **The equation of the equation**
- transfer paid to all *raters*: $\tau(x) = (\tau_1(x), ..., \tau_I(x))$

Simultaneous reporting: observations

 $\blacksquare \bar{x}^1$ best response to \bar{x}^{-1} , if for each m:

$$\forall \hat{x}^i \in S : E_{S^{-1}}[\tau_i(\bar{x}^i_m, \bar{x}^{-1}) \mid S^i = s_m] \geq E_{S^{-1}}[\tau_i(\hat{x}^i, \bar{x}^{-1}) \mid S^i = s_m]$$

- \blacksquare \bar{x} is Nash Equilibrium (NE) for simultaneous reporting if formula holds for i = 1..I and strict NE if inequality is strict.
- lacktriangle o truthful revelation is NE of simultaneous reporting , if formula holds for all i when $x_m^i = s_m$ for all i and m

Scoring in simultaneous reporting:

- score rule T strictly proper, if rater maximizes expected score by announcing true belief
 - e.g.: logarithmic scoring rule:
 - penalize player the log of probability s/he assigned to occurred event
 - **a** assign reference rater $r(i) \neq i$, strict NE when:
 - assuming r(i) reports honestly x^{r(i)}(s_m) = s_m
 Sⁱ stochastically informative for S^{r(i)}

 - \blacksquare since r(i) honest \rightarrow stochastically informative on r(i) as well
 - for any $S^i = s^*$, rater chose $x^i \in S$ to maximize: $\sum_{m=1}^{M} T(s^{r(i)} | x^i) Pr(S_{r(i)} = s_n | S_i = s^*)$
 - T strictly proper \rightarrow formula maximized for $x^i = s^*$
 - \blacksquare \rightarrow given r(i) truthful, i's best option truthful as well
- however: truthful reporting not unique equilibrium, e.g.:
 - report h all the time
 - report I all the time

Transitive trust

- problem: lack of objective feedback → agents rep is tied to non feedback action → calculated from other agents rep
- initial trusted set (agents trusting each other) \rightarrow recursive calc
- problem when to propagate trust and when to stop calculation

Transitive trust - modelling

- \blacksquare view rep systems as trust graphs G = (V, E, t):
 - V set of agents
 - E set of directed edges
 - $t: E \to \mathbb{R}^+$
 - $\blacksquare F: G \to \mathbb{R}^{|V|}$
 - \blacksquare $F_v(G)$ reputation value of $v \in V$
- simple PageRank: $F_v(G) = e + (1 e) \sum_{v' \mid (v',v) \in E} F_v(G)t(v',v)$
- \blacksquare max flow: $F_{\nu}(G)$ maximum flow from some start node $\nu_0 \in V$ to v
 - select one or several trusted start nodes
- Pathrank: $F_{\nu}(G)$ shortest path to some $\nu_0 \in V$, distance is inverse of trust value
- Problem: choose rep function so v cannot boost rep with strategic feedback

Phantom attack

- also called sybil attack, sock puppet:
 - create many fake ids to boost rep of primary id
- sybil strategy:
 - **given** G = (V, E, t) create G' = (V', E', t') with $U' \subseteq V'$ if $v \in U'$ and collapsing U' to v in G' results in G

Sybil-proof

- value sybil proof function F:
 - $\blacksquare \ \forall G \land v \in V$: if no sybil strategy exists for any $u \in U'$ that would fullfil $F_{\nu}(G') > F_{\nu}(G)$.
- rank-sybil proof function F:
 - $\blacksquare \ \forall G \land v \in V$: if no sybil strategy exists: $u \in U' \land w \in V \setminus \{v\} : F_u(G') \geq F_w(G') \land F_u(G) < F_w(G)$
 - → no symmetric sybil attack proof function F can exist
- max flow is value sybil-proof:
 - \blacksquare max flow equals min-cut \rightarrow all sybils of v on same side of cut and other side than \rightarrow no sybil can have higher value than v
- max flow is not rank sybil proof:
 - reduce values for nodes where it is on max-flow path:

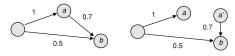


Figure 27.2. Node (a) improves its ranking by adding a sybil (a') under max-flow.

Sybil-proof continued

pathrank is value and rank sybil proof

- \blacksquare v cannot increase its shortest path \rightarrow value proof
- v could affect w if v on shortest path, but $F_v(G) > F_w(G)$
 - \rightarrow rank-proof

Summary

- reputation systems are in everyday use
- because of popularity under constant attack
- three weaknesses of reputation systems:
 - whitewashing
 - incorrect feedback
 - phantom feedback
- can be solved with algorithms

Perspective

- many open problems remain:
 - settings with lack of honest third party (compare center from simultaneous reporting game)
 - users able to intercept each other msgs
 - → distributed reputation systems
- analyse google's or yahoo's Trust Rank algorithm
- design (and implement) system robust to described attacks

Sources

Nisan, Roughgarden, Tardos, Vazirani. Algorithmic Game Theory, chapter 27