
Isotonic Regression by Dynamic Programming

Günter Rote

November 22, 2012

1 Weighted Isotonic L1 Regression

Weighted isotonic L1 regression (or weighted isotonic median regression) is the following
problem:

Approximate a given sequence of numbers a1, . . . , an with weights wi > 0
by an increasing sequence x1 ≤ x2 ≤ · · · ≤ xn, minimizing the L1-error

n∑
i=1

wi · |xi − ai|.

This problem can be solved in O(n log n) time [1, 5]. These algorithms will be
reviewed in Section 9.

A conceptually easy dynamic programming approach leads to another algorithm
with running time O(n log n). The resulting program is very simple and requires a
priority queue as the only auxiliary data structure.

2 Dynamic Programming Setup

We consider the subproblems

fk(z) := min
{ k∑

i=1

wi · |xi − ai| : x1 ≤ x2 ≤ · · · ≤ xk = z
}

(1)

for k = 1, . . . , n and a real parameter z. This leads in a straightforward way to the
following dynamic programming recursion:

fk(z) := min{ fk−1(x) : x ≤ z }+ wk · |z − ak| (k = 1, . . . , n; z ∈ R)

f0(z) := 0 (z ∈ R)
(2)

The following properties of these functions will be easily established by induction.

Lemma 1. (a) fk is a piecewise linear convex function.

(b) The breakpoints are located at a subset of the points ai.

(c) The leftmost piece has slope −
∑k

i=1wi. The rightmost piece has slope wk.

1

3 Piecewise Linear Functions

We can represent a continuous piecewise linear function f(x) as a list of breakpoints, see
Figure 1. Each breakpoint has a position: the x-value where it is located, and a value:
the slope difference between the right and the left adjacent pieces. The breakpoints are
naturally ordered by position, but for the time being, we leave it unspecified whether
we want to store is as a sorted list or in some other data structure. The function is
convex if all breakpoints have nonnegative values.

x

y = f(x)

y = s′x+ t′

y = s′′x+ t′′

y = sx+ t

x0

Figure 1: A piecewise linear function with four breakpoints. There is a breakpoint at
position x0 with value s′′ − s′.

These breakpoint data determine the function f only up to addition of an arbitrary
linear function. To determine f uniquely, we must add two further parameters. For
example, we can take the slope s and the intercept t of the rightmost linear piece
y = sx + t. We can then proceed from right to left, and across each breakpoint, the
value of the breakpoint gives us the slope ŝ of next linear piece y = ŝx+t̂, and continuity
of f allows us to fix the intercept t̂.

Two functions are added by combining the list of breakpoints and adding the (s, t)
parameters. If several breakpoints have the same position, they might be merged into
one breakpoint, adding their values. However, this is not necessary; the algorithm will
work just as well with equal breakpoints.

4 Carrying out the Recursion (2)

We denote by
gk−1(z) := min{ fk−1(x) : x ≤ z }

the intermediate function in going from fk−1 to fk.
Let us assume by induction that Lemma 1 holds for fk−1. The function fk−1 is first

monotonically decreasing to a minimum at some position pk−1 and then monotonically
increasing; therefore the optimum of fk−1(x) under the constraint x ≤ z depends on
the position of z relative to pk−1: If z ≤ pk−1 then x = z is the optimum choice,
and gk−1(z) = fk−1(x). If z ≥ pk−1 then the optimum choice is x = pk−1, and
gk−1(z) = fk−1(pk−1), see Figure 2.

2

fk−1(z)

z

y

pk−1

gk−1(z)

Figure 2: Constructing gk−1 from fk−1

As a consequence of this, we get the following relation between the optimal values
x∗k−1 and x∗k in the optimal solution:

x∗k−1 := min{x∗k, pk−1} (3)

Summarizing, the function gk−1 has the same decreasing pieces as fk−1 but the in-
creasing pieces are replaced by a horizontal piece of constant value fk−1(pk−1). This
is formally described in Algorithm 1. In representing the functions, we only have to
deal with the slope s of the rightmost piece; the intercept t is not needed. Since the
leftmost slope is negative, by Lemma 1c, the while-loop will terminate, and the list of
breakpoints will never become empty. If fk−1 has a horizontal piece, the algorithm will
arbitrarily choose the leftmost minimum pk−1.

Input: list of breakpoints of fk−1 and rightmost slope s
Result: updated list of breakpoints of gk−1 and rightmost slope s; position pk−1

of the (leftmost) minimum of fk−1
Let B be the rightmost breakpoint;
while s−B.value ≥ 0 do // next-to-last piece is not decreasing

s := s−B.value;
Delete B from the list of breakpoints;
Let B be the rightmost remaining breakpoint;

pk−1 := B.position; // pk−1 is the position of the minimum of fk−1.
B.value := B.value− s;
s := 0;

Algorithm 1: Converting fk−1 to gk−1

Finally, to obtain fk, we simply have to add the function wk · |z − ak| to gk−1: add
a breakpoint of value 2wk at position ak, and add wk to s.

It is easy to see that Lemma 1 holds now for fk. The base case (k = 1) is obvious,
and the lemma is hence proved by induction.

5 The Weighted Regression Algorithm

We see that the algorithm only needs to access the rightmost breakpoint, and potentially
delete it. A new breakpoint is inserted for each new data point ak. This calls for a

3

(max-)priority queue for storing the breakpoints, using position as the key.
Algorithm 2 shows the complete algorithm that we can now put together. The main

loop turns gk−1 into fk and then into gk. We start with the function g0(z) = 0, and
add w1 · |z− a1| to it to obtain f1. The algorithm records the minimum position pk for
each function. In the last loop, the minimum of fn is found as part of the construction
of gn.

Finally, the optimum solution (xi) is computed in a simple loop according to (3),
starting with the minimum x∗n = pn of the function fn.

Q := ∅; // priority queue of breakpoints ordered by the key position
s := 0;
for k = 1, . . . , n do

Q.add(new breakpoint B with B.position := ak, B.value := 2wk);
s := s + wk; // Now we have computed fk.
B := Q.findmax;
while s−B.value ≥ 0 do

s := s−B.value;
Q.deletemax;
B := Q.findmax;

pk := B.position;
B.value := B.value− s;
s := 0; // Now we have computed gk.

// Now compute the optimal solution x1, . . . , xn:
xn := pn;
for k = n− 1, n− 2, . . . , 1 do

xk := min{xk+1, pk};
Algorithm 2: Weighted isotonic l1 regression by dynamic programming

6 Runtime Analysis

In total, n elements are inserted in the queue Q. Each iteration of the while-loop
removes an element from Q, and therefore the overall number of executions of the while-
loop is bounded by n. With a heap data structure for Q, each operation deletemax, or
insert can be carried out in O(log n) time. The findmax operation takes only constant
time. Hence, the overall running time is O(n log n).

Theorem 1. Algorithm 2 solves the weighted isotonic L1 regression problem in O(n log n)
time.

7 Unweighted Regression

In the unweighted case (wi ≡ 1), some steps can be simplified: s is always 0 at the
beginning of the for-loop and 1 before the while-loop. Thus, the variable s can be
eliminated, and the while-loop can be turned into an if -statement. Breakpoints have
weight 1 or 2.

4

8 Weighted Isotonic L2 Regression

It is straightforward to extend the approach to the L2-error

n∑
i=1

wi · (xi − ai)
2.

Exercises. 1) Show that the functions fk defined in analogy to (1) for the L1 case
are piecewise quadratic convex functions. Explore their further properties, in analogy
to Lemma 1.
2) Design an appropriate efficient data structure for representing this class of functions.
3) Show that the dynamic programming recursions can be solved in O(n) overall time,
using only a stack as a data structure.
4) Compare the algorithm to the algorithm of Stout [5, Fig. 5 and Fig. 7] and find out
whether the two algorithms carry out essentially the same calculations.

9 Other Algorithms

The most extensively studied approach for the isotonic regression problem is the al-
gorithm Pool Adjacent Violators (PAV). This classical method, which has often been
rediscovered, starts by combining adjacent values that are not monotone (ai+1 < ai)
into pairs, and it further combines groups into larger groups as long as the medians of
adjacent groups are out of order.

Ahuja and Orlin [1] gave an O(n log n) algorithm that is based on the PAV principle
but uses scaling for speedup. It refines estimates for the optimum xi values in a binary-
search-like manner. To get a running time that is independent of the range of values,
the algorithm replaces the given values ai by 1, . . . , n while keeping their relative order
fixed.

Stout [5] has given an efficient direct implementation of the PAV approach, using
mergeable trees (for example, AVL trees or 2-3-trees, see [3]), achieving a running time
of O(n log n).

Another approach, which I have not found in the literature, is to model the problem
as a minimum-cost network flow problem: The unknowns xi are flow values on a chain;
the inequalities xi ≤ xi+1 become conservation-of-flow relations, with an additional
entering arc taking the slack. The resulting network is series-parallel, and hence can
be solved in O(n log n) time, by an algorithm of Booth and Tarjan [2]. However, their
algorithm also relies on mergeable trees, and moreover, it needs O(n log∗ n) space to
recover the optimum solution. So this approach is not preferable to Stout’s algorithm.
The algorithm follows the dynamic programming paradigm, and thus, in spirit, it is
closer to the algorithm of this paper.

Ahuja and Orlin [1] wrongly attribute an earlier O(n log n) time algorithm to [4],
but this paper has only an algorithm with O(n log2 n) runtime.

Comparison. The algorithm of Stout [5] involves tree data structures (for example,
AVL trees or 2-3-trees) augmented with weight information, and needs the nonstan-
dard merging operation: two trees of size m and n with m ≤ n can be merged in
O(m log n

m) = O(log
(
m+n
n

)
) time.

The scaling PAV algorithm of Ahuja and Orlin [1], on the other hand, requires no
data structures beyond arrays and linked lists. The algorithm itself, however, is not so
simple. Moreover, it requires an initial sort of the elements.

5

The dynamic programming algorithm is very simple and requires just a priority
queue, in which each element is inserted once and retrieved at most once. Thus, the pri-
ority queue has to perform the same insert operations and fewer deletemax operations
than would be required for heapsort; one might expect that the dynamic programming
algorithm is finished while the scaling PAV algorithm is still busy in its sorting phase.

Incremental Computation (Prefix Regression). The dynamic programming al-
gorithm processes data as they arrive, producing the solution for the first i items after
reading them. (To have the of the objective function value always ready, the algorithm
must be extended to deal with the intercept t in addition to the slope s.)

Stout [5] has called this problem the prefix isotonic regression problem: solving the
regression problem for all prefixes of the input. His algorithm solves also this problem
in O(n log n) time. He uses it as a subroutine for the unimodal regression problem.

The scaling PAV algorithm of Ahuja and Orlin is not suitable for incremental com-
putation.

Data-Sensitivity. Another question is how the algorithm responds to input that is
almost sorted. This is a natural assumption in the statistical applications, where the
data “should” be monotone but is distorted by measurement errors.

The PAV algorithm will have an advantage, since values ai that are in the correct
order with respect to their neighbors and are approximated by themselves (xi = ai)
will be looked at only once. Moreover, data will usually cluster in small groups, and
in the O(log n) bound on the tree operations, the parameter n can be replaced by the
size of groups.

The scaling PAV algorithm of Ahuja and Orlin [1], on the other hand, is completely
insensitive to the data: in addition to sorting, it will always perform O(log n) linear
sweeps over the data.

The dynamic programming algorithm might potentially benefit from almost sorted
data. At least in the case when the input comes in truly sorted order, the algorithm will
never call deletemax. To make use of this, one would need a priority queue where it is
cheaper to retrieve (by findmax) and delete elements that have recently been inserted.

References

[1] R. K. Ahuja and J. B. Orlin, A fast scaling algorithm for minimizing separable
convex functions subject to chain constraints, Operations Research 49 (2001), 784–
789, doi:10.1287/opre.49.5.784.10601.

[2] Heather Booth and Robert Endre Tarjan, Finding the minimum-cost max-
imum flow in a series-parallel network, J. Algorithms 15 (1993), 416–446,
doi:10.1006/jagm.1993.1048.

[3] M. R. Brown and R. E. Tarjan, A fast merging algorithm, J. Assoc. Comp. Mach.
26 (1979), 211–226, doi:10.1145/322123.322127.

[4] P. M. Pardalos, G. L. Xue, and Y. Li, Efficient computation of an isotonic median
regression, Applied Mathematics Letters 8 (1995), no. 2, 67–70, doi:10.1016/0893-
9659(95)00013-G.

[5] Quentin F. Stout, Unimodal regression via prefix isotonic regression, Comp. Stat.
and Data Anal. 53 (2008), 289–297, doi:10.1016/j.csda.2008.08.005.

6

http://dx.doi.org/10.1287/opre.49.5.784.10601
http://dx.doi.org/10.1006/jagm.1993.1048
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1016/0893-9659(95)00013-G
http://dx.doi.org/10.1016/0893-9659(95)00013-G
http://dx.doi.org/10.1016/j.csda.2008.08.005

	Weighted Isotonic L1 Regression
	Dynamic Programming Setup
	Piecewise Linear Functions
	Carrying out the Recursion (2)
	The Weighted Regression Algorithm
	Runtime Analysis
	Unweighted Regression
	Weighted Isotonic L2 Regression
	Other Algorithms

