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Lemma 1. Consider two planes in R3 with unit normals u+ and u−. As-
sume that u+ and u− enclose an angle at most ε ∈ (0, π/2) with the xy-plane,
and the angle between them lies in [β, π−β], where 0 < β 5 π/2. Then their
intersection line encloses an angle at most

δ := arcsin
sin ε

sin(β/2)

with the z-axis, provided that ε 5 β/2. This inequality is sharp.

Proof. We choose a new coordinate system in the following way. The
intersection line becomes the vertical axis, and the two normal vectors
u+, u− ∈ S2 lie in the horizontal plane, enclosing an angle β′ ∈ [β, π − β]
with each other. In the new coordinate system, the original North Pole
becomes n = (n1, n2, n3) ∈ S2.

By hypothesis,

(5) ⟨n, u−⟩, ⟨n, u+⟩ ∈ [− sin ε, sin ε].

We want to conclude that

(6) |
⟨
(0, 0, 1), n

⟩
| = |n3| = cos δ,

i.e., that

(7)
√

n2
1 + n2

2 5 sin δ.

The points (n1, n2) ∈ R2 (projections of n to the xy-plane) for n satisfying
(5) form a rhomb of height 2 sin ε and angles β′, π − β′. A farthest point of
this rhomb from (0, 0) is one of the vertices and its distance from (0, 0) is

max
{
(sin ε)/ sin(β′/2), (sin ε)/ cos(β′/2)

}
5 (sin ε)/ sin(β/2) = sin δ. That

is, (7), or equivalently, (6) holds and both are sharp inequalities. Hence, the
inequality of the lemma holds and it is sharp. �

Lemma 2. Consider a convex polyhedron P ⊂ R3 with facet areas
S1, . . . , Sm. Assume that its facet outer normals enclose an angle at most ε
with the xy-plane and the angle between any two of them lies in [β, π − β],
where 0 < β 5 π/2. Then its volume is bounded by

V (P ) 5 2−1/4π−1 ·
( m∑

i=1

S
3/4
i

)2

·
(

sin ε

sin(β/2)

)1/2

,

if (sin ε)/ sin(β/2) 5 1/
√
2.
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Proof. We denote by si(z) the length of the horizontal cross-section of
the i-th facet at height z, and by smax

i the maximum length of such a hor-
izontal cross-section. Let hi be the “height” of the i-th face: the difference
between the maximum and the minimum z-coordinates of its points. Let
h′i be the “tilted height” of this facet in its own plane, i.e., the height when
the plane is rotated into vertical position about one of its horizontal cross-
sections.

Since (sin ε)/ sin(β/2) < 1, we have by Lemma 1 that P has no horizontal
edges. Therefore, using the quantity δ introduced in Lemma 1, we get

(8) smax
i 5 hi · tan δ.

Namely, from the minimal z-coordinate – where si(z) = 0 – si(z) can in-
crease only with a speed at most 2 tan δ (< ∞) to reach its maximal value
smax
i . This is clear for a vertical face, and for a nonvertical face the speed
is even smaller. Observe that the i-th facet lies in an upwards circular cone
with vertex the lowest point of the i-th facet and directrices enclosing an an-
gle δ with the z-axis. From the maximal value it must decrease again with
speed at most 2 tan δ till 0 at the maximal z-coordinate.

Therefore, using for (10) inequality (8),

Si = smax
i h′i/2 = smax

i hi/2(9)

= (smax
i )2/(2 tan δ).(10)

This gives

(11) smax
i 5

√
2Si tan δ.

These relations allow us to bound the volume V (P ) as follows, by using the
isoperimetric inequality on each horizontal slice.

V (P ) =

∞∫
−∞

(area of cross-section of P at height z) dz

5
∞∫

−∞

( m∑
i=1

si(z)

)2

dz/(4π)
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=
m∑
i=1

m∑
j=1

∞∫
−∞

si(z)sj(z) dz/(4π)

5
m∑
i=1

m∑
j=1

smax
i smax

j min{hi, hj}/(4π)(12)

5
m∑
i=1

m∑
j=1

smax
i smax

j

√
hihj/(4π)

=

( m∑
i=1

smax
i

√
hi

)2

/(4π)

=

( m∑
i=1

√
smax
i

√
smax
i hi

)2/
(4π)

5
( m∑

i=1

(2Si tan δ)
1/4
√
2Si

)2/
(4π)(13)

=
(
∑m

i=1 S
3/4
i )

2

√
2π

·
√

(sin ε)/ sin(β/2)√
1− (sin2 ε)/ sin2(β/2)

(14)

5 (
∑m

i=1 S
3/4
i )

2

√
2π

·

√√
2 sin ε

sin(β/2)
.

The first inequality uses the isoperimetric inequality. The second inequal-
ity (12) bounds the integral by an upper bound of the non-negative in-
tegrand times the length of the interval where the integrand is positive.
For (13), we have used (9) and (11). To obtain (14), we have used
Lemma 1. The last inequality simplifies the denominator under the assump-

tion (sin ε)/ sin(β/2) 5 1/
√
2 of the lemma. �

4.6. Third proof of Theorem 2 for n = 3 dimensions

As in the first proof, we use Minkowski’s Theorem F′. We want to apply
Lemma 2, making ε small. Thus, we must let the normal vectors with given
lengths Si converge to the xy-plane, keeping their sum to be 0. Moreover,
the linear span of the outer unit facet normals should be R3. Then we apply
Minkowski’s Theorem F′. In the limiting configuration the normals will lie



THE INFIMUM OF THE VOLUMES OF CONVEX POLYTOPES IS 0 27

Now, since sin2 ε 5 b2/
[
2(n− 1)3

]
, the angle δ from Lemma 3 lies in

(0, π/2). Hence, by Lemma 3, P has no horizontal edges, and thus, also
no horizontal k-faces for any k ∈ {1, . . . , n− 2}. Therefore, once more by
Lemma 3, we know that every facet is contained in two rotationally sym-
metric cones with (n− 1)-balls as bases. One cone has its apex at the unique
lowest point of this facet and extends upwards from there. Its axis is vertical
(parallel to the xn-direction), and the directrices enclose an angle δ with the
xn-axis. The other cone extends downwards from the highest point of the
facet and has a vertical axis and directrices enclosing an angle δ with the xn-
axis. We use the upwards cone from the minimal height till the arithmetic
mean of the minimal and maximal heights. We use the downward cone for
the other half of the vertical extent of the facet. By this argument, we can
bound the maximum cross-section area smax

i of the i-th facet as follows.

(17) smax
i 5

(
(hi/2) · tan δ

)n−2 · κn−2.

(From the minimal height till the arithmetic mean of the minimal and max-
imal heights we have the following. Any horizontal cross-section of the cone
is contained in some (n− 1)-ball of radius at most R := (hi/2) · tan δ. Thus,
any horizontal cross-section of the facet lies inside the intersection of its
own affine hull with the upwards cone. That is, it lies in the intersection of
an (n− 2)-dimensional affine subspace with a cone whose base is an (n− 1)-
ball of radius at most R. Hence, this horizontal cross-section lies inside some
(n− 2)-ball of radius at most R. A similar argument holds for the downward
cone.) Moreover, we also have

(18) Si = smax
i h′i/(n− 1) = smax

i hi/(n− 1).

Let us rewrite (17) and (18) as follows.

h
−(n−2)
i · smax

i 5
(
(tan δ)/2

)n−2 · κn−2(19)

hi · smax
i 5 (n− 1)Si.(20)

We multiply the 1/
[
(2n− 2)(n− 2)

]
-th power of (19) with the n/(2n− 2)-th

power of (20) to get an inequality that we will need.

(21) (smax
i )(n−1)/(2n−4)

√
hi

5
(
(tan δ)/2

)1/(2n−2) · (κn−2)
1/[(2n−2)(n−2)] ·

(
(n− 1)Si

)n/(2n−2)
.
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Let K :=
[
(n− 1)n−1κn−1

]−1/(n−2)
denote the constant of the isoperimetric

inequality in n− 1 dimensions:

(22) Vn−1(C) 5 K ·
(
Vn−2(∂C)

) (n−1)/(n−2)

(for C ⊂ Rn−1). Now we can bound the volume as follows.

V (P ) =

∞∫
−∞

[
(n− 1)-volume of the cross-section of P at height xn

]
dxn

5
∞∫

−∞

[( m∑
i=1

si(xn)

)(n−1)/(2n−4)
]2

dxn ·K

5
∞∫

−∞

[ m∑
i=1

si(xn)
(n−1)/(2n−4)

]2
dxn ·K

=

∞∫
−∞

m∑
i=1

m∑
j=1

si(xn)
(n−1)/(2n−4)sj(xn)

(n−1)/(2n−4) dxn ·K

=
m∑
i=1

m∑
j=1

∞∫
−∞

si(xn)
(n−1)/(2n−4)sj(xn)

(n−1)/(2n−4) dxn ·K

5
m∑
i=1

m∑
j=1

(smax
i )(n−1)/(2n−4)(smax

j )(n−1)/(2n−4)min{hi, hj} ·K(23)

5
m∑
i=1

m∑
j=1

(smax
i )(n−1)/(2n−4)(smax

j )(n−1)/(2n−4)
√

hihj ·K

5 (tan δ)1/(n−1) · 2−1/(n−1) · (κn−2)
1/[(n−1)(n−2)] · (n− 1)n/(n−1)(24)

·
( m∑

i=1

S
n/(2n−2)
i

)2

·K

= constn ·
( m∑

i=1

S
n/(2n−2)
i

)2
(

(n− 1)3/2(sin ε)/b√
1− (n− 1)3(sin2 ε)/b2

)1/(n−1)

(25)
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5 const′n ·
( m∑

i=1

S
n/(2n−2)
i

)2

·
(
sin ε

b

)1/(n−1)

.

The first inequality uses the isoperimetric inequality (22). The second in-

equality uses the concavity of the function t(n−1)/(2n−4) for t ∈ [0,∞) and
its vanishing at t = 0. (Observe that 0 < (n− 1)/(2n− 4) 5 1.) Inequality
(23), as in (12), bounds the integral of a non-negative function by an upper
bound of the integrand times the length of the interval where the integrand
is positive. For (24), we have used the bound (21) that we derived above.
Inequality (25) uses the bound δ from Lemma 3. Finally, by hypothesis,
the expression under the square root in the denominator of (25) is bounded

below by 1− (n− 1)3(sin2 ε)/b2 = 1/2. We have therefore established the
claimed upper bound.

Now we give the example for the lower bound for n = 3 and m = 2n.
Let ε ∈ (0, ε0), where ε0 ∈ (0, π/4) will be chosen later. Let us write
Rn = Rn−1 ⊕ R. Let T+, T− ⊂ Rn−1 be regular (n− 1)-simplices circum-
scribed about the unit ball Bn−1 of Rn−1. Put them in such a general
position w.r.t. each other so that any n− 1 of their altogether 2n facet outer
normals linearly span Rn−1. Let n 5 m+,m− and m = m+ +m−. Let R±

be obtained from T± by intersecting it still with m± − n closed halfspaces
in Rn−1, all containing Bn−1, with their boundaries touching Bn−1. Then

Bn−1 ⊂ R± ⊂ T± ⊂ (n− 1)Bn−1.

Let the altogether m = m+ +m− facet outer unit normals of R+ and R−

satisfy the same condition of general position as above. Namely, any n− 1 of
them linearly span Rn−1. Let b > 0 be the minimum of the (n− 1)-volumes
of the (n−1)-parallelotopes spanned by any n−1 of these altogether m facet
outer unit normals.

Observe that for n = 3 and m = 2, the largest value of b is sin(π/m)
– if we do not begin the construction with two regular triangles but allow
any m facet outer unit normals in Sn−2 = S1. For n > 3, the maximal value
of b can be bounded from above as follows – again not beginning with two
regular simplices, but allowing any m facet outer unit normals in Sn−2. Let
us choose altogether n− 1 outer unit normal vectors of R+ and R−, say,
u1, . . . , un−1 ∈ Sn−2. We have∣∣det(u1, . . . , un−1)

∣∣
(n− 1)!

= Vn−2

(
conv{u1, . . . , un−1}

)
· dist

(
0, aff{u1, . . . , un−1}

)
/(n− 1)

5 Vn−2

(
conv{u1, . . . , un−1}

)
/(n− 1).


