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32. Static rigidity and Dehn’s theorem

This is the first of two sections where we prove Dehn’s theorem, an infinitesimal ver-
sion of the Cauchy rigidity theorem. We include two proofs: a variation on Cauchy’s
original proof in Section 26 and Dehn’s original proof.

32.1. Who needs rigidity? In the next two sections we introduce two new con-
cepts, the static and the infinitesimal rigidity of convex polyhedra, which turn out
to be equivalent to each other and imply continuous rigidity. These ideas are crucial
in modern rigidity theory; their natural extensions to general frameworks (of bars,
cables and struts) were born out of these considerations and have a number of related
properties. While we spend no time at all on these extensions, we find these ideas
useful in discussions on Cauchy’s and Gluck’s theorems.

To summarize the results in the next two sections, we show that Gluck’s Theo-
rem 31.3 follows from Dehn’s lemma on the determinant of a rigidity matrix, which
we also introduce. We also show that the continuous rigidity also follows from Dehn’s
lemma. We then present three new proofs of Dehn’s lemma, all without the use of the
Cauchy theorem, as well as one extra proof of continuous rigidity of convex polyhedra.
As the reader shall see, all this is done and motivated by the two rigidity concepts.

32.2. Loading the edges. To define the static rigidity, we need to extract the key
ingredient in the proof of Gluck’s theorem we presented in the previous section.

Let V = {v1, . . . , vn} be the set of vertices of a plane triangulation Γ = (V,E), and
denote by f : V → R3 its planted realization. Let E be a set of ordered pairs: if
(vi, vj) ∈ E, then (vj , vi) ∈ E as well. Now, for every edge e = (vi, vj) ∈ E, denote by

e ij =
−−−−−−→
f(vi)f(vj) = (xj − xi, yj − yi, zj − zi) ∈ R3

the corresponding edge vector in the realization. In this notation, e ij = −e ji, for
all (vi, vj) ∈ E. The set of scalars {λij ∈ R, (vi, vj) ∈ E} is said to be an edge load if
λij = −λji, λ12 = λ13 = λ23 = 0, and

∑

j : (vi,vj)∈E
λije ij = 0, for all i ∈ [n].

We say that a planted realization f : V → R3 of (V,E) defining the polytope is
statically rigid if there is no nonzero static load {λij}. Finally, a simplicial convex
polytope P with graph Γ = (V,E) is statically rigid if so is the planted realization
of Γ obtained by a rigid motion of P . The following result is the key result of this
section.

Theorem 32.1 (Dehn’s theorem; static rigidity of convex polytopes). Every simpli-
cial convex polytope in R3 is statically rigid.

We already proved this result in a different language. To see this, consider a ma-

trix RΓ with rows R(ij)
Γ corresponding to edges (vi, vj) ∈ E, written in lexicographical

order:

R(ij)
Γ = (. . . , xi − xj , yi − yj, zi − zj , . . . , xj − xi, yj − yi, zj − zi, . . .).
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The matrix RΓ is called the rigidity matrix. Now observe, the Jacobian J(·) is a
determinant of the matrix with the following rows:

dFij =

(
. . . ,

∂Fij
∂xr

,
∂Fij
∂yr

,
∂Fij
∂zr

, . . .

)
= 2R(ij)

Γ .

We showed that the Jacobian J(·) = 2m detRΓ 6= 0, when evaluated at a planted
realization f : Γ → R3 defined by a convex polytope P . Thus, there is no nonzero
linear combination of the rows of the rigidity matrix, with coefficients λij as above.
Interpreting the set of coefficients {λij} as the edge load, we obtain the statement of
Dehn’s theorem.

In the opposite direction, given Theorem 32.1, we obtain that detRΓ 6= 0. There-
fore, the Jacobian is nonzero, which in turn implies Gluck’s theorem without the use
of the Cauchy theorem. To conclude this discussion, the static rigidity of convex
polytopes is equivalent to the following technical statement.

Lemma 32.2 (Dehn). Let P ⊂ R3 be a simplicial convex polytope with a graph
Γ = (V,E). Then the rigidity matrix RΓ is nonsingular.

In the following two subsections we present three independent proofs of Dehn’s
lemma, all (hopefully) easier and more elegant than any of the previous proofs of the
Cauchy theorem. Until then, let us make few more comments.

First, let us show that Dehn’s lemma implies the (continuous) rigidity of convex
polytopes (Corollary 26.7). Indeed, consider the m-dimensional space W of planted
realizations of Γ = (V,E). The space W is mapped onto the m-dimensional space
of all length functions, and the determinant J(·) = 2m detRΓ is nonzero at convex
realizations. Therefore, in a small neighborhood of a convex realization the edge
lengths are different, and thus a simplicial convex polytope is always rigid.

Our second observation is that the Cauchy theorem is more powerful than Theo-
rem 32.1. To see this, recall the Cauchy–Alexandrov theorem on uniqueness of convex
polyhedral surfaces (Theorem 27.6). This immediately implies the rigidity of these
surfaces77. On the other hand, such realizations are not necessarily statically rigid,
as the example in Figure 32.1 shows. Here we make arrows in the directions with
positive coefficients which are written next to the corresponding edges.

32.3. Proof of Dehn’s lemma via sign changes. This proof goes along the very
same lines as the traditional proof of the Cauchy theorem (see Section 26.3). We first
show that the edge load {λij} gives a certain assignment of signs on edges, then prove
the analogue of the sign changes lemma (Lemma 26.4), and conclude by using the
sign counting lemma (Lemma 26.5).

Proof of Dehn’s lemma. Consider an edge load {λij | (vi, vj) ∈ E} on the edges in P .
To remove ubiquity, consider only coefficients λij with i < j. Let us label the edge
(vi, vj) ∈ E, i < j, with (+) if λij > 0, with (−) if λij < 0, and with (0) if λij = 0.

77One has to be careful here: this only proves rigidity in the space of convex realizations. In fact,
the continuous rigidity holds for all non-strictly convex realizations; this is a stronger result due to
Connelly (see [Con5])
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Figure 32.1. Stresses on a non-strictly convex polyhedral surface S
show that it is not statically rigid.

Lemma 32.3 (Static analogue of the sign changes lemma). Unless all labels around
a vertex are zero, there are at least four sign changes.

By Lemma 26.5, we conclude that all labels must be zero. This proves Dehn’s
lemma modulo Lemma 32.3. �

Proof of Lemma 32.3. Denote by e1, . . . , ek the edge vectors of edges leaving vertex w
of a convex polytope P . We assume that w is at the origin and the edge vectors are
written in cyclic order. Suppose we have a nonzero linear combination

u := λ1e1 + . . . + λkek = 0.

Denote by H any generic hyperplane supporting P at w, i.e., a hyperplane contain-
ing w, such that all vectors e i lie in the same half-space. If there are no sign changes,
i.e., λ1, . . . , λk ≥ 0 or λ1, . . . , λk ≤ 0. Then their linear combination u is also in the
same half-space unless all λi = 0, a contradiction.

Suppose now that there are two sign changes, for simplicity λ1, . . . , λi ≥ 0 and
λi+1, . . . , λk ≤ 0. Denote by H a hyperplane which contains vectors e1, . . . , e i in a
half-space H+, and e i+1, . . . , ek in the other half-space H−. Then the linear combi-

e1
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e3

e4

e5

w

H

Figure 32.2. Hyperplane H separating edges in a polytope P .
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nation u is in H+ unless all λi = 0, another contradiction (see Figure 32.2). Thus,
there are at least four sign changes unless all labels are zero. �

32.4. Proof of continuous rigidity from the angular velocity equation. Before
we continue with other proofs of Dehn’s lemma, let us show how continuous rigidity
(Corollary 26.7) follows from the angular velocity equation (Lemma 28.2), which was
proved in Section 29 by a simple independent argument. The proof will be almost
completely the same as the above proof of Dehn’s lemma.

Proof of Corollary 26.7 modulo Lemma 28.2. Consider the angular velocity equation
for each vertex and assign labels to all edges according to the signs of derivatives θ′e(t).
By the proof of Lemma 32.5, either all labels around a vertex are zero, or there are at
least four sign changes. Now use the sign counting lemma (Lemma 26.5) to conclude
that all labels bust be zero, i.e., all derivatives are zero (more precisely, all left and
right derivatives at each point are zero, which is equivalent). Thus the dihedral
angles remain constant under the continuous deformation, and the deformation itself
is a rigid motion. �

32.5. Graph-theoretic proof of Dehn’s lemma. Let Γ = (V,E) be a plane tri-
angulation, and let RΓ(. . . , xr, yr, zr, . . .) be the rigidity matrix defined above. To
prove Dehn’s lemma we compute D = det(RΓ) and show that it is 6= 0 for convex
realizations.

Let us use the fact that most entries in RΓ are zero. Observe that every 3 × 3
minor of RΓ either contains a zero row or column, or two columns which add up to
zero, or looks like

M(a | b, c, d) =



xa − xb ya − yb za − zb
xa − xc ya − yc za − zc
xa − xd ya − yd za − zd


 ,

where a, b, c, d represent distinct integers in [n]. Here we assume that b < c < d and
the ordering on rows corresponding to edges (vi, vj) ∈ E is lexicographic. In addition
to these minors, there is one special non-degenerate 3 × 3 minor of RΓ, with rows
corresponding to the edges (v1, v2), (v1, v3), and (v2, v3), and the columns to x2, x3,
and y3:

M(1, 2, 3) =




x2 0 0
0 x3 y3

x2 − x3 x3 − x2 y3


 .

Now, using the Laplace expansion for detRΓ over triples of rows we conclude that
the determinant D is the product of determinants of the 3× 3 minors as above, each
given up to a sign. Since we need these signs let us formalize this as follows.

We say that vertices v1, v2, v3 are base vertices and the edges between them are base
edges. A claw in Γ is a subgraph H of Γ isomorphic to K1,3, i.e., a subgraph K(a |
b, c, d) consisting of four distinct vertices va, vb, vc, vd and three edges: (va, vb), (va, vc),
and (va, vd). We call vertex va the root of the claw K(a | b, c, d). Recall that Γ


