
§. Excerpts from class, November 6 [notes by TLL]

We spent the first half of class examining the solutions to a homework assignment (see §
below). Don says that the solutions were surprisingly good (see §).
One of the proofs described in that section contains illustrations in four colors. Don says
that color can be used effectively in talks, but usually not in papers (for that matter,
Leslie Lamport says that proofs should never be presented in talks, but only in papers).
Technical illustrations, even without four colors, cause no end of trouble: Don says that
the amount of work involved in preparing a paper for publication is proportional to the
cube of the number of illustrations. But they are indispensable in many cases.

Don showed us several of the illustrations, charts, and tables from The Art of Computer
Programming, Volume 3, and recounted the difficulties in choosing clear methods of pre-
senting his ideas. He also mentioned some technical and artistic problems that he had with
an illustration: At what angle should the truncated octahedron on page 13 be displayed?

His books contain some numerical tables (“which are sometimes thought to be unenlight-
ening”); Don says that they can sometimes present ideas that can’t be demonstrated
graphically (such as numbers oscillating about 2 with period 2π, page 41). Diagrams with
accompanying text are also used. Don made sure that the final text was arranged opposite
the diagrams to which it refers.

The book contains a running example of how 16 particular numbers are sorted by dozens
of different algorithms. Each algorithm leads to a different graphical presentation of the
sorting activities on those numbers (pages 77, 82, 84, 97, 98, 106, 110, 113, 115, 124, 140,
143, 147, 151, 161, 165, 166, 172, 175, 205, 251, 253, 254, 359).

§. A Homework Problem

The Appendix to Gillman’s book takes a paper that has horrible notation and simplifies
it greatly. Your assignment is to take Gillman’s simplification and produce something
simpler yet. Aim for notation that needs no double subscripts or subscripted superscripts.
This assignment will be graded! Please take time to do your best.

Here is a statement of Gillman’s simplification. This is your starting point. What is the
best way to present Sierpiński’s theorem?

Lemma. There is a one-to-one correspondence between the set of all real numbers α and
the set of all pairs (〈nk〉, 〈tk〉), where 〈nk〉k≥1 is an increasing sequence of positive integers
and 〈tk〉k≥1 is a sequence of real numbers.

Notation. The sequences 〈nk〉 and 〈tk〉 corresponding to α are called 〈nα
k 〉 and 〈tαk 〉. The

set of real numbers is called R.
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Theorem. Assume that 〈Aα〉α∈R is a family of countably infinite subsets of R such that,
for α 6= β, either α ∈ Aβ or β ∈ Aα. Then there is a sequence of functions fn : R → R
such that, if S is any uncountable subset of R, we have fn(S) = R for all but finitely
many fn.

Proof. Let the countable set Aα consist of the real numbers

{α1, α2, α3, . . . } .

If α is any real number, define an increasing sequence of positive integers 〈lαk 〉 by letting
lα1 = nα1

1 and then, after lαk−1 has been defined, letting lαk be the least integer in the
sequence 〈nαk

1 , nαk
2 , . . . 〉 that is greater than lαk−1.

Let fn be the function on real numbers defined by the rule

fn(α) =

{
tαk
n , if n = lαk for some k ≥ 1 ;

α , otherwise.

We will show that the sequence of functions fn satisfies the theorem, by proving that any
set S for which infinitely many n have fn(S) 6= R must be countable.

Suppose, therefore, that 〈nk〉 is an increasing sequence of integers and that 〈tk〉 is a se-
quence of real numbers such that

tnk
/∈ fnk

(S) , for all k ≥ 1 .

Let tj = 0 if j is not one of the numbers {n1, n2, . . .}. By the lemma, there’s a real

number β such that nk = nβ
k and tk = tβk for all k.

Let α be any real number 6= β such that α /∈ Aβ . We will prove that α /∈ S; this will prove
the theorem, because all elements of S must then lie in the countable set Aβ ∪ {β}.
By hypothesis, β ∈ Aα. Hence we have β = αk for some k. If we set n = lαk , we know by
the definition of fn that

fn(α) = tαk
n = tβn = tn .

But the construction of lαk tells us that n = nαk
j = nβ

j = nj for some j. Therefore

fnj (α) = tnj .

We chose tnj
/∈ fnj

(S), hence α /∈ S.
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[Here are additional excerpts from TLL’s classnotes for October 16, when the homework
problem was handed out:] The first thing that we learned in class today was that now
would be a good time to buy Leonard Gillman’s book (Writing Mathematics Well). Not
only have several copies (finally) arrived at the bookstore, but Don has given us a homework
assignment straight out of the Appendix of this book.

The assignment (which is due on Friday, October 30th) is to take the “simplified version”
of the proof in Gillman’s case study and to simplify it still further. The main simplifying
principle is to minimize subscripts and superscripts. When we are done, there should be
no subscripted subscripts and no subscripted superscripts. As Don said, “Try to recast
the proof so that the idea of the proof remains the same, but the proof gets shorter.”

The original proof was written by Sierpiński. Don told us that Sierpiński was a great
mathematician who wrote several papers cited in Concrete Mathematics, from the year
1909 as well as 1959. But the notation in Sierpiński’s original proof quoted by Gillman
was so complicated that it confused even him: His proof contained an error that was found
by another mathematician (after publication).

While the mathematics used in the proof is not trivial, it uses only functions and sets and
should be accessible to us. (This is not to say that it is immediately obvious.) Anyone who
is uncomfortable with what sets are, what it means for a set to be countable, or what a one-
to-one correspondence is, may need some help with this assignment. Don recommended
visiting the TAs during office hours as a good first step for those who feel they need help.
(It might also help to remember that Don says, “It’s not necessary to understand the proof
completely in order to do this assignment.”)

Don’t worry if the hypothesis of the theorem seems pretty wild; it is pretty wild. It
implies the “Continuum Hypothesis.” The Continuum Hypothesis states that there are no
infinities between the countably infinite (the cardinality of the integers) and the continuum
(the cardinality of the real numbers). From 1900 to 1960, the truth or falsity of the
Continuum Hypothesis was one of the most famous unsolved problems of mathematics;
Sierpiński published his paper as a step toward solving that problem. Kurt Gödel proved
in 1938 that the Continuum Hypothesis is consistent with standard set theory; Paul Cohen
of Stanford proved 25 years later that the negation of the Continuum Hypothesis is also
consistent. Thus we know now that the hypothesis can be neither proved nor disproved.

[Here are additional excerpts from PMR’s classnotes for October 23:] The homework
assignment is due a week from today, Don said; so do it as well as possible, and let’s not
have any excuses!
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