
Abstract For a given set of line segments and a polygon P in the plane, we
study the problem to find the maximum number of segments that can be disjointly
embedded by translation into P . We show APX-hardness of this problem and
discuss variations.

This problem can be considered in two respects: as a variant of the Kakeya
problem and as a maximum-packing problem for line segments.

1 Introduction

The Kakeya Problem. The famous Kakeya problem asks for the region R in the
plane with minimum area such that a unit-length line segment can continuously
rotate by π within R. One variant of the Kakeya problem relaxes the continuous
rotation and try to find a planar region R′ with the minimum area such that
translates of all the unit-length line segments in the plane can be placed in R′.
The segments may intersect. This region R′ is called a minimum area translation
cover.

Pál [5, 4] solved these two problems, and many other interesting variations
about the minimum-area translation cover have been studied (refer [6, 3] for sur-
veys).
A Minimum-Container Problem and a 3-approximation Algorithm. Find-
ing a minimum-area translation cover can be considered as a minimum-container
problem if we want to disjointly embed line segments. The following question arises
naturally in this context; given a set of line segments S, what is the minimum-area
convex body R such that translates of segments in S can be disjointly embedded
in R?

A 3-approximation algorithm for this problem is as follows. . . .

Problem Definition and Summary of Results. To solve a minimum-container
problem it is natural to consider its dual, that is, a maximum-packing problem.
We consider the maximum-packing problem in this abstract. We show hardness
results for a simple polygon and a simple approximation algorithm for a convex
polygon.

As in [2], we define MaxSegPackd for a class R of regions in Rd as the
following problem; given a collection of (open) segments and a region R ∈ R,
what is the maximum number of segments that can be disjointly embedded in R
by translation?
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Before describing the reduction from MAX-3-SAT, we state the following two
lemmas for constructing gadgets.

Lemma 1. Let S be a set of unit-length line segments with distinct slopes. There
exists a convex polygon Q = Q(S) with the following properties:

1. any segment s ∈ S fits in Q;
2. no two segments in S can be packed in Q; and
3. no unit-length line segment s 6∈ S fits in Q.

Proof. Translate all the segments of S so that their midpoints lie at the origin.
Now define Q(S) as the convex hull of all those segments.

The diameter of Q is 1 and the diameter is attained only for pairs of points
that lie at the opposite extreme points of Q. Therefore, a unit-length line segment
s fits in Q if and only if s can be translated in a way that its endpoints lie at the
opposite extreme points of Q. This implies the first and the third property.

Each segment s that fits in Q has a unique position in Q and this unique
position always goes through the origin. Thus, no two segments of unit-length can
be packed in Q. This implies the second property.

Lemma 2. Let S be a set of unit-length line segments such that the angle with the
x-axis is within ±0.1 radiant. And let S ′ be a set of unit-length line segments such
that the angle with the y-axis is within ±0.1 radiant.

There exists a convex polygon R = R(S, S ′) with the following properties:
1. segments in S can be packed in R;
2. segments in S ′ can be packed in R;
3. no segments s ∈ S and s′ ∈ S ′ can be embedded simultaneously in R; and
4. no unit segment s 6∈ S ∪ S ′ fits into R.

Proof. Translate the left endpoint of every line segment s ∈ S to the point (−0.5, 0)
and the bottom endpoint of every line segment s′ ∈ S ′ to the point (0,−0.5). The
convex hull of those segments define R = R(S, S ′).

The diameter of Q is 1 and the diameter is attained only for pairs of points
(p, q) such that either 1) p is at (−0.5, 0) and q is one of right extreme points.
or 2) p is at (0,−0.5) and q is one of top extreme points. These are exactly the
endpoints of segments in S ∪ S ′ after we moved the segments of S. By the same
argument as in Lemma 1, any unit-length line segment s fits in R if and only if
s ∈ S∪S ′. Each segment s that fits in R has a unique position p(s) in R. Observe
that p(s1) and p(s2) are disjoint if either s1, s2 ∈ S or s1, s2 ∈ S ′ and p(s1) and
p(s2) intersect otherwise. Thus, any two segments s1 and s2 can be embedded
simultaneously in R if and only if either s1, s2 ∈ S or s1, s2 ∈ S ′. Altogether these
arguments imply the above four properties.
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