
1.3 An exact algorithm in the plane

In this section we describe a deterministic linear time algorithm to construct a
halving line ` for a given set D of n disks in the plane. The line ` bisects D
perfectly (at most bn/2c centers lie on either side) and it intersects at most O(nc)
disks, where c may be chosen arbitrarily close to 2/3.

The algorithm follows the prune and search paradigm. And is inspired by the
prune and search algorithm to find a ham-sandwich-cut in deterministic linear
time [44].

We will not consider all possible halving lines, but restrict our attention to
those halving lines with their slope in a certain range. This range becomes smaller
and smaller after each iteration. We will discard after each iteration a constant
fraction of the disks. Namely, those disks that do not intersect any halving line
that we still consider. Each iteration step will take linear time. And thus the
overall running time is linear as well.

The section is divided into several subsections. We first repeat some definitions
regarding point-line duality in Subsection 1.3.1. ...

Recall, the algorithm follows the prune and search paradigm. In the process
we will consider only halving lines with a certain slope. Thus in the dual only the
λ-level with certain x-coordinates are considered.

Definition 1 (Slab) A closed region bounded by two vertical lines is a slab. A
slab S = {(x, y) ∈ R2: l ≤ x ≤ r} we denote by S = [l, r]. The distance r − l
between the two bounding vertical lines is the width of S.

We will also denote closed intervals with [l, r].
As mentioned before, some disks will be discarded. Namely, those that do not

intersect any of the potential halving lines under consideration.

1.3.2. Overview of the Algorithm.

The algorithm works in the dual arrangement and follows the prune and search
paradigm. This means we find a point on the bn/2c-level of the dual line arrange-
ment which interferes with at most O(nδ) lines. We will show that δ can be chosen
arbitrarily close to 2/3.

Recall that we will follow the prune and search algorithm. In our case the
algorithm consists of three phases. The algorithm starts with an initialization
then goes into some loop and finally returns an appropriate point.
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Lemma 12 ... The main condition is

w ≥ c log n/n. (1)

...

The outline of an iteration step is as follows.

1. Divide S in four subslabs S1, . . . , S4, such that the width of each subslab
equals w/4.

2. Let vi be the number of vertices in slab Si. Compute the approximate number
of vertices pi in each slab according to Lemma 14 with c = ε/100. Subsec-
tion 1.3.5 is devoted to the proof of Lemma 14.

3. Define S ′ = [l′, r′] as the slab with smallest pi. We will show that for the
number of vertices v′ within this slab holds v′ ≤ n2

100
. Subsection 1.3.6 is

devoted to proof correctness of this step.

4. Construct a trapezoid T ⊆ S ′ as describe in Lemma 13. By Lemma 13 we
know that T contains the λ-level of A(L) within S ′ and at most half of
the lines from L intersect T . For this step we will use that the number of
intersections is low.

Subsection 1.3.4 is devoted to the proof of this lemma and description of the
construction of the trapezoid.

5. We define a 1-tube τ of the trapezoid as in the end of Subsection 1.3.1.
Further we define the γ-core Cγ to be the central (1− 2γ)-section of S ′, that
is, Cγ = [l′+γw′, r′−γw′]. See Figure 7, for an illustration. We continue our
search in the next iteration in S = Cγ. Lemma 15 in Subsection .3.7 shows
that at most εn lines intersect τ within Cγ. For this step we use Condition 1.
Intuitively this means that the width of the slab is not too small.

6. Discard exactly b(1
2
− ε)nc lines from L that do not intersect S ∩ (τ ∪T ). By

Lemma 10 and 11 these lines do not interfere with the λ-level of L within
S and we can discard them. By Lemma 13 and 15 we know that we can
discard at least (1

2
− ε)n lines.

7. We adjust λ accordingly: decrease λ by the number of lines discarded that
are below τ .
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3.1 Introduction

Definition. Given a graph G = (V,E) two players denoted by Alice and Bob
take turns alternatingly in the following manner: in the first turn they choose a
start vertex in G (not both the same). Thereafter, in each turn the players pick a
vertex that is adjacent to the vertex they have picked in their last turn. It is not
allowed to pick a vertex that has been chosen by either of the players before at
any stage of the game. Thus the vertices get used and cannot be reused. When
both players cannot move the game ends and each player gets a score equal to
the number of vertices traversed before they could not move anymore. We denote
the score for Alice and Bob as #A and #B respectively. We say Alice wins if
#A> #B; Bob wins if #B> #A; and otherwise we call a play of a game a tie. The
outcome of a play is defined as #B/#A. We say that the players play rational ly
if both try to optimize the worst case outcome, i.e., Alice minimizes and Bob
maximizes the worst case outcome.

One could also consider the difference instead of the ratio of #A and #B. We
will see that this would lead to less interesting results and strategies.

The extremal question is by how much can Alice win in comparison to Bob
and vice versa. The complexity question asks for the computational complexity
class of determining if Alice has a winning strategy.

The game must end ultimately when all vertices are eaten up. And of course
the game is not loopy, as it is impossible to return to a previous state of the game.
A game is called loopy if it is possible to return to a previous state of the game.
We assume that both players have perfect information at all times. The game
is defined as normal play, that is the players try to move as long as possible, in
the sense made precise above. It is also possible to consider the variant of misère
game, where the players try to be unable to move as soon as possible. We further
distinguish whether start vertices are given and whether the graph is directed or
undirected.

A problem L is PSPACE-complete if every decision problem, that can be de-
cided with polynomial amount of space can be reduced to L and L can be decided
with polynomial amount of space.

The decision problem Tron is the following: the input is a graph and we want
to answer the question whether Alice has a winning strategy. We consider the
decision problem under different game modes as described above.

For convenience, we define the length of a path to be the number of vertices.

Franchise. Tron is a 1982 American science fiction movie. It was directed by
Steven Lisberger and produced by Disney Studios. After its release a whole cult
originated from the movie: several books, ...
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4.1 Definitions

The house allocation problem is motivated by the following setup: a set of people is
interested to be allocated to a certain set of houses. Each person has a ranking over
the set of houses and wants to be assigned to the house with her highest preference.
As soon as two people have the same favorite house this is not possible. Motivated
by this picture we abstract the set up and start with some definitions.

In an instance of the house allocation problem two sets A and B are given.
The set A represents applicants and the set B represents houses. We denote by
m and n the size of A and B respectively. In the house allocation problem, we
assume that every a ∈ A has a preference list over the set B. A preference list can
be formally defined as a total order of B. We call an injective mapping τ from
A to B a matching. A blocking coalition of τ is a subset A′ of A such that there
exists a matching τ ′ that differs from τ only on elements of A′, and every element
of A′ improves in τ ′, compared to τ according to its preference list. If there exists
no blocking coalition, we call the matching τ a Pareto optimal matching (POM).

We represent the preference lists by an m×n matrix. Every row represents the
preference list of one of the applicants in A, i.e., in a given row r corresponding to
some applicant a ∈ A, the leftmost house is the one that a prefers most, etc., house
b1 is left to b2 in r if and only if a prefers b1 over b2. Note that no row contains
an element from B twice. We usually denote this matrix by M and following
this interpretation we usually denote the applicants of A by r1, r2, . . . rm and the
houses of B by 1, 2, . . . , n. Because of this matrix representation, we usually refer
to applicants of A only as rows and to houses of B as elements (of the matrix).

To illustrate the notion consider the following matrix and observe that the
matching indicated by circles is indeed Pareto optimal. 1 5 3 2 4

3 1 4 5 2

1 3 5 4 2


The image set of τ corresponds to the set of houses of B in these positions. Thus,
we say that τ selects some position p of M (resp. some element b of B), if p is in τ
(resp. b is in the image set of τ). Similarly, we say that a row a selects a position
P in row a (resp. element b) if this holds for the matching τ under consideration.
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