
This is one case of the “Master Theorem” for divide-and-conquer recur-
rences.

Theorem 1. Let a ≥ 1 and b > 1 be constants, and let f(n) and T (n) be
nonnegative functions defined on the nonnegative integers. Let γ := logb a >
0, and let n0 ≥ 1 be some integer constant.

(a) Suppose we have the recurrence inequality

T (n) ≤ aT (dn/be) + f(n), for all n > n0. (1)

If f(n) = O(nγ), then

T (n) = O(nγ log n).

(b) Suppose we have the recurrence inequality

T (n) ≥ aT (bn/bc) + f(n), for all n > n0. (2)

If f(n) = Ω(nγ), then

T (n) = Ω(nγ log n).

(c) If the recurrence (2) holds and T (n) > 0 for all n, then

T (n) = Ω(nγ).

The proof will be given in the style proposed by E. W. Dijkstra1, but
without motivation or explanation.

Proof. (a) The upper bound. Set

V := b/(b− 1). (3)

By arithmetic manipulations, we can conclude that

− V/b = 1− V. (4)

If necessary, increase the integer threshold n0 such that

n0/b ≥ V + 2 (5)

and
n0/b ≤ n0 − 1. (6)

1 Edsger W. Dijkstra. The notational conventions I adopted, and why. EWD1300, Ju-
ly 2000. https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1300.
html
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Increasing n0 makes the assumption (1) weaker, and thus we can assume
(5–6) without loss of generality. From the last inequality, we obtain

n/b ≤ n− 1, for all n ≥ n0. (7)

Set
M := max{T (0), T (1), T (2), . . . , T (n0)} (8)

By the assumption f(n) = O(nγ), we can choose u such that

f(n) ≤ u · nγ, (9)

for all n ≥ 1.

u′ := max

{
u

(
n0

n0 − V

)γ

,
M

(n0/b− V )γ logb(n0/b− V )

}
, (10)

which is well-defined and positive due to (5). It follows that

u · nγ ≤ u′ · (n− V )γ, for all n ≥ n0 (11)

We define the nonnegative function

T̂ (n) := u′(n− V )γ logb(n− V ) (12)

for all real numbers n ≥ V + 1. It is a product of two nonnegative increasing
functions and is therefore monotone increasing. We claim that T̂ (n) is an
upper bound on T (n):

T (n) ≤ T̂ (n), for all integers n ≥ n0/b (13)

From this, the desired asymptotic bound T (n) = O(nγ log n) follows imme-
diately. Note that, by (5), the interval [n0/b,∞) for n is contained in the
domain [V + 1,∞) of T̂ , and therefore the inequality (13) makes sense.

As induction basis, we prove (13) for the range n0/b ≤ n ≤ n0 directly:

T̂ (n)

≥ { T̂ is monotone increasing }
T̂ (n0/b)

= { definition of T̂ }
u′(n0/b− V )γ logb(n0/b− V )

≥ { second term in the definition (10) of u′ }
M

≥ { definition (8) of M , assumption n ≤ n0 }
T (n)
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We are ready for the induction step to prove (13). We assume n > n0,
and the induction hypothesis is that T (i) ≤ T̂ (i) has been proved for all i in
the range n0/b ≤ i < n.

T (n)

≤ { recurrence (1) }
aT (dn/be) + f(n)

≤ { dn/be < n by (7), dn/be ≥ n0/b, induction hypothesis }
aT̂ (dn/be) + f(n)

≤ { T̂ is monotone }
aT̂ (n/b+ 1) + f(n)

≤ { definition (12) of T̂ }
au′(n/b+ 1− V )γ logb(n/b+ 1− V ) + f(n)

≤ { (4) }
au′(n/b− V/b)γ logb(n/b− V/b) + f(n)

= { rearrangement }
(a/bγ)u′(n− V )γ logb((n− V )/b) + f(n)

= { a = bγ by the definition of γ, laws of logarithms }
u′(n− V )γ

(
logb(n− V )− 1

)
+ f(n)

≤ { f(n) = O(nγ), condition (9) on u }
u′(n− V )γ

(
logb(n− V )− 1

)
+ u · nγ

≤ { (11) }
u′(n− V )γ

(
logb(n− V )− 1

)
+ u′ · (n− V )γ

= { arithmetic }
u′(n− V )γ logb(n− V )

= { definition of T̂ }
T̂ (n)

(b) The lower bound for the assumption f(n) = Ω(nγ). This is in many
ways analogous to part (a). By the assumption f(n) = Ω(nγ), there are
constants u > 0 and n1 such that

f(n) ≥ u · nγ, for all n ≥ n1 (14)

It follows directly from (2) that T (n) ≥ f(n), and hence

T (n) > 0, for n ≥ n1. (15)
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We use the same definition (3) of V as in part (a), and we impose the same
constraints (5–6) on n0. In addition, we also require that n0 is big enough to
fulfill the inequality

n0/b− 1 ≥ n1. (16)

Set
m := min{T (bn0/bc), . . . , T (n0 − 1), T (n0)} (17)

By (15) and (16),
m > 0. (18)

Set

u′ := min

{
u

(
n0

n0 + V

)γ

,
m

(n0 + V )γ logb(n0 + V )

}
, (19)

which is positive due to (18). We define the nonnegative function

T̂ (n) := u′(n+ V )γ logb(n+ V ) (20)

for all real numbers n ≥ 0. Since V > 1, by (3), this is a product of two
nonnegative increasing functions and is therefore monotone increasing. We
claim that T̂ (n) is a lower bound on T (n):

T (n) ≥ T̂ (n), for all integers n > n0/b− 1 (21)

From this, the desired asymptotic bound T (n) = Ω(nγ log n) follows imme-
diately. Note that, by 5, n0/b > 1, and the range of n in which we claim (21)
is contained in the domain of T̂ . As induction basis, we prove (21) for the
range n0/b− 1 < n ≤ n0 directly:

T̂ (n)

≤ { T̂ is monotone increasing }
T̂ (n0)

= { definition of T̂ }
u′(n0 + V )γ logb(n0 + V )

≤ { second term in the definition (19) of u′ }
m

≤ { definition (17) of m, assumption n0/b− 1 < n ≤ n0 }
T (n)

We are ready for the induction step to prove (21). Assume n > n0. The
induction hypothesis is that T (i) ≥ T̂ (i) has been proved for all i in the
range n0/b− 1 < i < n.
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T (n)

≥ { recurrence (2) }
aT (bn/bc) + f(n)

≥ { n0/b− 1 < bn/bc and bn/bc < n by (7), induction hypothesis }
aT̂ (bn/bc) + f(n)

≥ { T̂ is monotone }
aT̂ (n/b− 1) + f(n)

≥ { definition (20) of T̂ }
au′(n/b− 1 + V )γ logb(n/b− 1 + V ) + f(n)

≥ { (4) }
au′(n/b+ V/b)γ logb(n/b+ V/b) + f(n)

= { rearrangement }
(a/bγ)u′(n+ V )γ logb((n+ V )/b) + f(n)

= { a = bγ by the definition of γ, laws of logarithms }
u′(n+ V )γ

(
logb(n+ V )− 1

)
+ f(n)

≥ { condition (14) on u, n > n0 ≥ n1 by (16) }
u′(n+ V )γ

(
logb(n+ V )− 1

)
+ u · nγ

≥ { first term in the definition (19) of u′, n ≥ n0 }
u′(n+ V )γ

(
logb(n+ V )− 1

)
+ u′ · (n+ V )γ

= { arithmetic }
u′(n+ V )γ logb(n+ V )

= { definition of T̂ }
T̂ (n)

(c) We finally prove the lower bound for the recursion (2) without any
assumption on f . We only require that T is positive. Set

m := min{T (0), T (1), T (2), . . . , T (n0 − 1), T (n0)}. (22)

By assumption,
m > 0, (23)

and hence the constant
u′ :=

m

(n0 + V )γ
(24)

is also positive, where V is still the same constant defined above (3). We
define the nonnegative and monotone increasing function

T̂ (n) := u′(n+ V )γ (25)
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for all real numbers n ≥ 0. We claim that T̂ (n) is a lower bound on T (n):

T (n) ≥ T̂ (n), for all n ≥ 0 (26)

From this, the desired asymptotic bound T (n) = Ω(nγ) follows immediately.
As induction basis, we prove (26) for 0 ≤ n ≤ n0 directly:

T̂ (n)

≤ { T̂ is monotone increasing }
T̂ (n0)

= { definition of T̂ }
u′(n0 + V )γ

≤ { definition (24) of u′ }
m

≤ { definition (22) of m, assumption n ≤ n0 }
T (n)

For the induction step, we consider n > n0, and the induction hypothesis
is that T (i) ≥ T̂ (i) has been proved for all i < n.

T (n)

≥ { recurrence (2) }
aT (bn/bc)

≥ { bn/bc < n, induction hypothesis }
aT̂ (bn/bc)

≥ { T̂ is monotone }
aT̂ (n/b− 1)

≥ { definition (25) of T̂ }
au′(n/b− 1 + V )γ

≥ { (4) }
au′(n/b+ V/b)γ

= { rearrangement }
(a/bγ)u′(n+ V )γ

= { a = bγ by the definition of γ }
u′(n+ V )γ

= { definition of T̂ }
T̂ (n)
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