
ad/97-08-04

UML Semantics

version 1.1
1 September 1997

Rational Software ■ Microsoft ■ Hewlett-Packard ■ Oracle
Sterling Software ■ MCI Systemhouse ■ Unisys ■ ICON Computing

IntelliCorp ■ i-Logix ■ IBM ■ ObjecTime ■ Platinum Technology ■ Ptech
Taskon ■ Reich Technologies ■ Softeam

ii UML v 1.1, Semantics

Copyright © 1997 Rational Software Corporation.
Copyright © 1997 Microsoft Corporation.
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.
Copyright © 1997 Sterling Software.
Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.
Copyright © 1997 ICON Computing.
Copyright © 1997 IntelliCorp.
Copyright © 1997 i-Logix.
Copyright © 1997 IBM Corporation.
Copyright © 1997 ObjecTime Limited.
Copyright © 1997 Platinum Technology, Inc.
Copyright © 1997 Ptech Inc.
Copyright © 1997 Taskon A/S.
Copyright © 1997 Reich Technologies.
Copyright © 1997 Softeam.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this entire
notice, including the following statement:

The most recent updates on the Unified Modeling Language are available via the
worldwide web, www.rational.com/uml.

The UML logo is a trademark of Rational Software Corp.
OMG, CORBA, CORBAfacility, and IDL are trademarks of the Object Management Group, Inc.

UML v 1.1, Semantics iii

Contents

1. INTRODUCTION.. 1

1.1 Purpose .. 1
1.2 Scope ... 1
1.3 Approach ... 2
1.4 Document Organization... 3
1.5 Related Documents .. 3

PART 1. BACKGROUND ... 5

2. LANGUAGE ARCHITECTURE ... 6

2.1 Overview.. 6
2.2 Four-Layer Metamodel Architecture ... 6
2.3 Package Structure .. 8

3. LANGUAGE FORMALISM .. 10

3.1 Levels of Formalism .. 10
3.2 Package Specification Structure .. 11
3.3 Use of a Constraint Language.. 12
3.4 Use of Natural Language ... 12
3.5 Naming Conventions and Typography .. 13

PART 2: FOUNDATION ... 14

4. FOUNDATION PACKAGE: CORE.. 15

4.1 Overview.. 15
4.2 Abstract Syntax.. 15
4.3 Well-Formedness Rules... 27
4.4 Semantics... 34
4.5 Standard Elements ... 39
4.6 Notes.. 40

5. FOUNDATION PACKAGE: AUXILIARY ELEMENTS ... 42

5.1 Overview.. 42
5.2 Abstract Syntax.. 43
5.3 Well-Formedness Rules... 47
5.4 Semantics... 49
5.5 Standard Elements ... 49

6. FOUNDATION PACKAGE: EXTENSION MECHANISMS ... 51

6.1 Overview.. 51
6.2 Abstract Syntax.. 53
6.3 Well-Formedness Rules... 56
6.4 Semantics... 57
6.5 Standard Elements ... 58
6.6 Notes.. 58

7. FOUNDATION PACKAGE: DATA TYPES .. 59

7.1 Overview.. 59
7.2 Abstract Syntax.. 60

PART 3. BEHAVIORAL ELEMENTS .. 64

iv UML v 1.1, Semantics

8. BEHAVIORAL ELEMENTS PACKAGE: COMMON BEHAVIOR .. 65

8.1 Overview.. 65
8.2 Abstract Syntax.. 66
8.3 Well-Formedness Rules... 73
8.4 Semantics... 77
8.5 Standard Elements ... 79

9. BEHAVIORAL ELEMENTS PACKAGE: COLLABORATIONS .. 80

9.1 Overview.. 80
9.2 Abstract Syntax.. 81
9.3 Well-Formedness Rules... 84
9.4 Semantics... 86
9.4 Standard Elements ... 88
9.5 Notes.. 88

10. BEHAVIORAL ELEMENTS PACKAGE: USE CASES .. 89

10.1 Overview ... 89
10.2 Abstract Syntax ... 90
10.3 Well-Formedness Rules... 91
10.4 Semantics .. 92
10.5 Standard Elements... 96
10.6 Notes ... 96

11. BEHAVIORAL ELEMENTS PACKAGE: STATE MACHINES.. 97

11.1 Overview ... 97
11.2 Abstract Syntax ... 97
11.3 Well-Formedness Rules... 103
11.4 Semantics .. 106
11.5 Standard Elements... 114
11.6 Notes ... 115
11.7 Activity Models... 120

PART 4. GENERAL MECHANISMS .. 127

12. MODEL MANAGEMENT PACKAGE .. 128

12.1 Overview ... 128
12.2 Abstract Syntax ... 129
12.3 Well-Formedness Rules... 131
12.4 Semantics .. 134
12.5 Standard Elements... 137
12.5 Notes ... 137

APPENDICES... 138

APPENDIX A: STANDARD ELEMENTS .. 139

A.1 Stereotypes .. 139
A.2 Tagged Values... 144
A.3 Constraints... 145

APPENDIX B: GLOSSARY.. 147

INDEX ... 161

UML v 1.1, Semantics v

Figures

Figure 1: Top-Level Packages.. 8
Figure 2: Foundation Packages ... 9
Figure 3: Behavioral Elements Packages... 9
Figure 4: Foundation Packages ... 14
Figure 5: Core Package−Backbone.. 16
Figure 6: Core Package−Relationships.. 17
Figure 7: Auxiliary ElementsDependencies and Templates ... 43
Figure 8: Auxiliary ElementsPhysical Structures and View Elements ... 44
Figure 9: Extension Mechanisms.. 53
Figure 10: Data Types.. 60
Figure 11: Behavioral Elements Packages... 64
Figure 12: Common BehaviorRequests .. 66
Figure 13: Common BehaviorActions .. 67
Figure 14: Common BehaviorInstances and Links... 67
Figure 15: Collaborations .. 81
Figure 16: Use Cases ... 90
Figure 17: State MachinesMain ... 98
Figure 18: State MachinesEvents ... 98
Figure 19: Modeling Class Behavior Example... 115
Figure 20: State Machine for Modeling Class Behavior .. 116
Figure 21: State Machine Refinement Example.. 116
Figure 22: Activity Models ... 121
Figure 23: Model Management .. 129

Tables

Table 1: Four Layer Metamodeling Architecture... 7
Table 2: CoreStandard Elements.. 40
Table 3: Auxiliary ElementsStandard Elements ... 50
Table 4: Common BehaviorStandard Elements.. 79
Table 5: State MachinesStandard Elements ... 114
Table 6: Model ManagementStandard Elements .. 137

UML v 1.1, Semantics 1

1. INTRODUCTION
The Unified Modeling Language (UML) is a general-purpose visual modeling language that is
designed to specify, visualize, construct and document the artifacts of a software system. The
UML is simple and powerful. The language is based on a small number of core concepts that most
object-oriented developers can easily learn and apply. The core concepts can be combined and
extended so that expert object modelers can define large and complex systems across a wide range
of domains.

The UML specification consists of two interrelated parts:

• UML Semantics. A metamodel that specifies the abstract syntax and semantics of UML
object modeling concepts.

• UML Notation. A graphic notation for the visual representation of the UML semantics.

 The abstract syntax for the UML Semantics is expressed using a small subset of the UML Notation.
In addition, the UML Notation describes the mapping of the graphic notation to the underlying
semantics. In this manner the two parts complement each other without duplicating functionality.
Whenever there is a difference between the two parts regarding semantics, this document takes
precedence.

This document specifies the UML Semantics. It describes the semantics using a metamodel that is
described in three views: abstract syntax, well-formedness rules and semantics.

 Feedback regarding this document should be e-mailed to uml_feedback@rational.com.

 1.1 PURPOSE

 This document is primarily intended as a comprehensive and precise specification of the UML’s
semantic constructs. The primary audience for this detailed description consists of the OMG, other
standards organizations, tool builders, metamodelers, methodologists, and expert modelers. The
authors assume familiarity with metamodeling and advanced object modeling. Readers looking for
an introduction to the UML or object modeling should consider another source.

 Although the document is meant for advanced readers, it is also meant to be easily understood by
its intended audience. Consequently it is structured and written to increase readability. The
structure of the document, like the language, builds on previous concepts to refine and extend the
semantics. In addition, the document is written in a ‘semi-formal’ style that combines natural and
formal languages in a complementary manner.

 1.2 SCOPE

 This document specifies semantics for structural and behavioral object models. Structural models
(also known as static models) emphasize the structure of objects in a system, including their
classes, interfaces, attributes and relations. Behavioral models (also known as dynamic models)
emphasize the behavior of objects in a system, including their methods, interactions, collaborations
and state histories.

2 UML v 1.1, Semantics

 The specification provides complete semantics for all modeling notations described in the UML
Notation document. This includes support for a wide range of diagram techniques: class diagram,
object diagram, use case diagram, sequence diagram, collaboration diagram, state diagram, activity
diagram, and deployment diagram. The UML Notation document includes a summary of the
semantics sections that are relevant to each diagram technique.

 1.3 APPROACH

 The specification emphasizes language architecture and formal rigor. The architecture of the UML
is based on a four-layer metamodel structure, which consists of the following layers: user objects,
model, metamodel, and meta-metamodel. This document is primarily concerned with the
metamodel layer, which is an instance of the meta-metamodel layer. For example, Class in the
metamodel is an instance of MetaClass in the meta-metamodel. The metamodel architecture of
UML is discussed further in the Language Architecture section.

 The UML metamodel is a logical model and not a physical (or implementation) model. The
advantage of a logical metamodel is that it emphasizes declarative semantics, and suppresses
implementation details. Implementations that use the logical metamodel must conform to its
semantics, and must be able to import and export full as well as partial models. However, tool
vendors may construct the logical metamodel in various ways, so they can tune their
implementations for reliability and performance. The disadvantage of a logical model is that it
lacks the imperative semantics required for accurate and efficient implementation. Consequently,
the metamodel is accompanied with implementation notes for tool builders.

 UML is also structured within the metamodel layer. The language is decomposed into several
logical packages: Foundation, Behavioral Elements, and General Mechanisms. These packages in
turn are decomposed into subpackages. For example, the Foundation package consists of the Core,
Auxiliary Elements, Extension Mechanisms and Data Types subpackages. The structure of the
language is fully described in the Language Architecture section.

 The metamodel is described in a semi-formal manner using three views:

• Abstract syntax

• Well-formedness rules

• Semantics

 The abstract syntax is provided as a model described in a subset of UML, consisting of a UML
class diagram and a supporting natural language description. (In this way the UML bootstraps itself
in a manner similar to how a compiler is used to compile itself.) The well-formedness rules are
provided using a formal language (Object Constraint Language) and natural language (English).
Finally, the semantics are described primarily in natural language, but may include some additional
notation, depending on the part of the model being described. The adaptation of formal techniques
to specify the language is fully described in the Language Formalism section

 In summary, the UML metamodel is described in a combination of graphic notation, natural
language and formal language. We recognize that there are theoretical limits to what one can
express about a metamodel using the metamodel itself. However, our experience suggests that this
combination strikes a reasonable balance between expressiveness and readability.

UML v 1.1, Semantics 3

 1.4 DOCUMENT ORGANIZATION

 This document consists of several parts:

• Part 1: Background, sections 2 – 3.

• Part 2: Foundation, sections 4 – 7.

• Part 3: Behavioral Elements, sections 8 – 11.

• Part 4: General Mechanisms, section 12.

 Part 1 explains how the UML is structured and specified. The language architecture section
describes the structure of the language and explains its four-layer metamodel architecture. The
language specification section describes how the language is rigorously defined using multiple
views.

Part 2 defines the infrastructure for UML, the Foundation package. The Foundation package is
decomposed into several subpackages: Core, Auxiliary Elements, Extension Mechanisms and Data
Types. The Core package specifies the basic concepts required for an elementary metamodel and
defines an architectural backbone for attaching additional language constructs, such as metaclasses,
metaassociations, and metaattributes. The Auxiliary Elements package defines additional
constructs that extend the Core to support advanced concepts such as dependencies, templates,
physical structures and view elements. The Extension Mechanisms package specifies how model
elements are customized and extended with new semantics. The Data Types package defines basic
data structures for the language.

 Part 3 defines the superstructure for behavioral modeling in UML, the Behavioral Elements
package. The Behavioral Elements package consists of four lower-level packages: Common
Behavior, Collaborations, Use Cases, and State Machines. Common Behavior specifies the core
concepts required for behavioral elements. The Collaborations package specifies a behavioral
context for using model elements to accomplish a particular task. The Use Case package specifies
behavior using actors and use cases. The State Machines package defines behavior using finite-
state transition systems.

 Part 4 defines mechanisms of general applicability to models. This version of UML contains one
general mechanisms package, Model Management. The Model Management package specifies how
model elements are organized into models, packages and systems.

 1.5 RELATED DOCUMENTS

 The following documents are also important for understanding the UML metamodel and how it is
used:

• The UML Summary provides an introduction to the UML, discussing its motivation and
history.

4 UML v 1.1, Semantics

• The UML Notation Guide defines the graphic syntax for expressing the semantics described
by the UML metamodel. Consequently, the UML Notation Guide should be read in
conjunction with the UML Semantics document.

• The Object Constraint Language Specification describes the OCL syntax, semantics, and
grammar. All OCL features are described in terms of concepts from the UML semantics
document.

• The UML CORBAfacility Interface Definition specifies a tool interoperability interface using
CORBA IDL.

• The UML Proposal Summary summarizes the OMG proposal and discusses the relationship
of UML to other technologies, including the MOF meta-metamodel.

UML v 1.1, Semantics 5

PART 1. BACKGROUND
Part 1 explains how the UML is structured and specified. The language architecture section
describes the structure of the language and explains its four-layer metamodel architecture. The
language formalism section describes how the language is defined using three complementary
views.

Contents

2. Language Architecture

3. Language Formalism

6 UML v 1.1, Semantics

2. LANGUAGE ARCHITECTURE

2.1 OVERVIEW

The UML metamodel defines the complete semantics for representing object models using UML. It
is defined in a metacircular manner, using a subset of UML notation and semantics to specify itself.
In this way the UML metamodel bootstraps itself in a manner similar to how a compiler is used to
compile itself.

The UML metamodel is one of the layers of a four-layer metamodel architecture. Since the
metamodel layer is relatively complex it is decomposed into logical packages. The UML packages
increase the modularity of the language and support multiple compliance points. The following
sections provide an overview of the UML four-layer metamodel architecture and describe its
package structure.

2.2 FOUR-LAYER METAMODEL ARCHITECTURE

The UML metamodel is defined as one of the layers of a four-layer metamodeling architecture.
This architecture is a proven infrastructure for defining the precise semantics required by complex
models. There are several other advantages associated with this approach:

• It validates core constructs by recursively applying them to successive metalayers.

• It provides an architectural basis for defining future UML metamodel extensions.

• It furnishes an architectural basis for aligning the UML metamodel with other standards
based on a four-layer metamodeling architecture (e.g., the OMG Meta-Object Facility,
CDIF).

 The generally accepted conceptual framework for metamodeling is based on an architecture with
four layers:

• meta-metamodel

• metamodel

• model

• user objects

 These functions of these layers are summarized in the following table:

UML v 1.1, Semantics 7

Table 1: Four Layer Metamodeling Architecture

 The meta-metamodeling layer forms the foundation for the metamodeling architecture. The
primary responsibility of this layer is to define the language for specifying a metamodel. A meta-
metamodel defines a model at a higher level of abstraction than a metamodel, and is typically more
compact than the metamodel that it describes. A meta-metamodel can define multiple metamodels,
and there can be multiple meta-metamodels associated with each metamodel.1 While it is generally
desirable that related metamodels and meta-metamodels share common design philosophies and
constructs, this is not a strict rule. Each layer needs to maintain its own design integrity. Examples
of meta-metaobjects in the meta-metamodeling layer are: MetaClass, MetaAttribute, and
MetaOperation.

 A metamodel is an instance of a meta-metamodel. The primary responsibility of the metamodel
layer is to define a language for specifying models. Metamodels are typically more elaborate than
the meta-metamodels that describe them, especially when they define dynamic semantics.
Examples of metaobjects in the metamodeling layer are: Class, Attribute, Operation, and
Component.

 A model is an instance of a metamodel. The primary responsibility of the model layer is to define a
language that describes an information domain. Examples of objects in the modeling layer are:
StockShare, askPrice, sellLimitOrder, and StockQuoteServer.

 User objects (a.k.a. user data) are an instance of a model. The primary responsibility of the user
objects layer is to describe a specific information domain. Examples of objects in the user objects

 1 If there is not an explicit meta-metamodel, there is an implicit meta-metamodel associated with every
metamodel.

 Layer Description Example

 meta-metamodel The infrastructure for a metamodeling
architecture. Defines the language for
specifying metamodels.

 MetaClass, MetaAttribute,
MetaOperation

 metamodel An instance of a meta-metamodel.
Defines the language for specifying a
model.

 Class, Attribute, Operation,
Component

 model An instance of a metamodel. Defines
a language to describe an information
domain.

 StockShare, askPrice, sellLimitOrder,
StockQuoteServer

 user objects
(user data)

 An instance of a model. Defines a
specific information domain.

 <Acme_Software_Share_98789>,
654.56, sell_limit_order,
<Stock_Quote_Svr_32123>

8 UML v 1.1, Semantics

layer are: <Acme_Software_Share_98789>, 654.56, sell_limit_order, and
<Stock_Quote_Svr_32123>.

The UML metamodel has been architected so that is can be instantiated from the OMG Meta
Object Facility (MOF) meta-metamodel. The relationship of the UML metamodel to the MOF
meta-metamodel is described in an appendix of the UML Proposal Summary.

 2.3 PACKAGE STRUCTURE

 The UML metamodel is moderately complex. It is composed of approximately 90 metaclasses and
over 100 metaassociations, and includes almost 50 stereotypes. The complexity of the metamodel
is managed by organizing it into logical packages. These packages group metaclasses that show
strong cohesion with each other and loose coupling with metaclasses in other packages. The UML
metamodel is decomposed into the top-level packages shown in Figure 1:

Behavioral
Elements

Model
Management

Foundation

Figure 1: Top-Level Packages

 The Foundation and Behaviorial Elements packages are further decomposed as shown in Figure 2
and Figure 3:

UML v 1.1, Semantics 9

CoreAuxiliary
Elements

Data Types

Extension
Mechanisms

Figure 2: Foundation Packages

Use Cases State MachinesCollaborations

Common
Behavior

Figure 3: Behavioral Elements Packages

The functions and contents of these packages are described in Parts 2 – 4 of this document.

10 UML v 1.1, Semantics

 3. LANGUAGE FORMALISM
 This section contains a description of the techniques used to describe UML. The specification
adapts formal techniques to improve precision while maintaining readability. The technique
describes the UML metamodel in three views using both text and graphic presentations. The
benefits of adapting formal techniques include:

• the correctness of the description is improved,

• ambiguities and inconsistencies are reduced,

• the architecture of the metamodel is validated by a complementary technique, and

• the readability of the description is increased.

 It is important to note that the current description is not a completely formal specification of the
language because to do so would have added significant complexity without clear benefit. In
addition, the state of the practice in formal specifications does not yet address some of the more
difficult language issues that UML introduces.

 The structure of the language is nevertheless given a precise specification, which is required for
tool interoperability. The dynamic semantics are described using natural language, although in a
precise way so they can easily be understood. Currently, the dynamic semantics are not considered
essential for the development of tools. However, this will probably change in the future.

 3.1 LEVELS OF FORMALISM

 A common technique for specification of languages is to first define the syntax of the language and
then to describe its static and dynamic semantics. The syntax defines what constructs exist in the
language and how the constructs are built up in terms of other constructs. Sometimes, especially if
the language has a graphic syntax, it is important to define the syntax in a notation independent
way (i.e., to define the abstract syntax of the language). The concrete syntax is then defined by
mapping the notation onto the abstract syntax. The syntax is described in sections headed Abstract
Syntax.

 The static semantics of a language define how an instance of a construct should be connected to
other instances to be meaningful, and the dynamic semantics define the meaning of a well-formed
construct. The meaning of a description written in the language is defined only if the description is
well formed (i.e., if it fulfills the rules defined in the static semantics). The static semantics are
found in sections headed Well-Formedness Rules. The dynamic semantics are described under the
heading Semantics. In some cases parts of the static semantics are also explained in the Semantics
section for completeness.

 The specification uses a combination of languagesa subset of UML, an object constraint
language, and precise natural languageto describe the abstract syntax and semantics of the full
UML. The description is self-contained; no other sources of information are needed to read the

UML v 1.1, Semantics 11

document.2 Although this is a metacircular description3, understanding this document is practical
since only a small subset of UML constructs are needed to describe its semantics.

 In constructing the UML metamodel different techniques have been used to specify language
constructs, using some of the capabilities of UML. The main language constructs are reified into
metaclasses in the metamodel. Other constructs, in essence being variants of other ones, are defined
as stereotypes of metaclasses in the metamodel. This mechanism allows the semantics of the
variant construct to be significantly different from the base metaclass. Another more “lightweight”
way of defining variants is to use metaattributes. As an example, the aggregation construct is
specified by an attribute of the metaclass AssociationEnd, which is used to indicate if an
association is an ordinary aggregate, a composite aggregate, or a common association.

 3.2 PACKAGE SPECIFICATION STRUCTURE

 The document has one section for each package in the UML metamodel. Each of these sections has
the following subsections:

• Abstract Syntax The abstract syntax is presented in a diagram showing the metaclasses
defining the constructs and their relationships. The diagram also presents some of the well-
formedness rules, mainly the multiplicity requirements of the relationships, and whether or
not the instances of a particular sub-construct must be ordered. Finally, a short informal
description in natural language describing each construct is supplied. The first paragraph of
each of these descriptions is a general presentation of the construct which sets the context,
while the following paragraphs give the informal definition of the metaclass specifying the
construct in UML. For each metaclass, its attributes are enumerated together with a short
explanation. Furthermore, the opposite role names of associations connected to the metaclass
are also listed in the same way.

• Well-Formedness Rules The static semantics of each construct in UML, except for
multiplicity and ordering constraints, are defined as a set of invariants of an instance of the
metaclass. These invariants have to be satisfied for the construct to be meaningful. The rules
thus specify constraints over attributes and associations defined in the metamodel. Each
invariant is defined by an OCL expression together with an informal explanation of the
expression. In many cases, additional operations on the metaclasses are needed for the OCL
expressions. These are then defined in a separate subsection after the well-formedness rules
for the construct, using the same approach as the abstract syntax: an informal explanation
followed by the OCL expression defining the operation.

The statement ‘No extra well-formedness rules’ means that all current static semantics are
expressed in the superclasses together with the multiplicity and type information expressed in
the diagrams.

2 Although a comprehension of the UML’s four-layer metamodel architecture and its underlying meta-
metamodel is helpful, it is not essential to understand the UML semantics.

3 In order to understand the description of the UML semantics, you must understand some UML semantics.

12 UML v 1.1, Semantics

• Semantics The meanings of the constructs are defined using natural language. The
constructs are grouped into logical chunks that are defined together. Since only concrete
metaclasses have a true meaning in the language, only these are described in this section.

• Standard Elements Stereotypes of the metaclasses defined previously in the section are
listed, with an informal definition in natural language. Well-formedness rules, if any, for the
stereotypes are also defined in the same manner as in the Well-Formedness Rules subsection.
Other kinds of standard elements (constraints and tagged-values) are listed, and are defined in
the Standard Elements appendix.

• Notes This subsection may contain rationales for metamodeling decisions, pragmatics for the
use of the constructs, and examples, all written in natural language.

 A complete index appears at the end of the document. Index entries have the page number bold
when the term is “first defined” (i.e. in the list of terms in an Abstract Syntax subsection). Later
uses or extra definitions are in ordinary font.

 3.3 USE OF A CONSTRAINT LANGUAGE

 The specification uses the Object Constraint Language (OCL), as defined in Object Constraint
Language Specification, for expressing well-formedness rules. The following conventions are used
to promote readability:

• ‘self’, which can be omitted as a reference to the metaclass defining the context of the
invariant, has been kept for clarity.

• In expressions where a collection is iterated, an iterator is used for clarity, even when
formally unnecessary. The type of the iterator is usually omitted, but included when it adds to
understanding.

• The ‘collect’ operation is left implicit where this is practical.

 3.4 USE OF NATURAL LANGUAGE

 We have striven to be precise in our use of natural language, in this case English. For example, the
description of UML semantics includes phrases such as “X provides the ability to…” and “X is a
Y.” In each of these cases, the usual English meaning is assumed, although a deeply formal
description would demand a specification of the semantics of even these simple phrases.

 The following general rules apply:

• When referring to an instance of some metaclass, we often omit the word “instance”. For
example, instead of saying “a Class instance” or “an Association instance”, we just say “a
Class” or “an Association”. By prefixing it with an “a” or “an”, assume that we mean “an

UML v 1.1, Semantics 13

instance of”. In the same way, by saying something like “Elements” we mean “a set (or the
set) of instances of the metaclass Element”.

• Every time a word coinciding with the name of some construct in UML is used, that construct
is referred.

• Terms including one of the prefixes sub, super, or meta are written as one word (e.g.,
metamodel, subclass).

 3.5 NAMING CONVENTIONS AND TYPOGRAPHY

 In the description of UML the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel, normal text
is used.

• The first time a UML construct or mechanism is mentioned in a context it is italicized.

• Metaclass names always start with uppercase, remainder lowercase, using italics and bold,
e.g.: ‘Classifier’. For names that consist of appended nouns/adjectives, initial embedded
capitals are used (e.g. ‘ModelElement’, ‘StructuralFeature’).

• Names of metaassociations/association classes are written in the same manner as metaclasses,
e.g. ‘ElementReference’

• Lowercase italics are used for names of association ends (role names), attributes and
operations in the metamodel, e.g.: ‘type’, ‘feature’. Initial embedded capital is used for names
that consist of appended nouns/adjectives e.g. ‘ownedElement’, ‘allContents’.

• Boolean metaattribute names always start with ‘is’ (e.g. ‘isAbstract’).

• While referring to metaclasses, metaassociations, metaattributes, etc in the text, the exact
names as they appear in the model are always used.

• Names of abstract metaclasses are shown in italics in the metamodel, but not distinguished
from other metaclasses in the text.

• Names of stereotypes are delimited by guillemets and begin with lowercase (e.g., «type»).

14 UML v 1.1, Semantics

PART 2: FOUNDATION
Part 2 defines the infrastructure for UML, the Foundation package. The Foundation package is
decomposed into several subpackages: Core, Auxiliary Elements, Extension Mechanisms and Data
Types. The Core package specifies the basic concepts required for an elementary metamodel and
defines an architectural backbone for attaching additional language constructs, such as metaclasses,
metaassociations, and metaattributes. The Auxiliary Elements package defines additional
constructs that extend the Core to support advanced concepts such as dependencies, templates,
physical structures and view elements. The Extension Mechanisms package specifies how model
elements are customized and extended with new semantics. The Data Types package defines basic
data structures for the language.

CoreAuxiliary
Elements

Data Types

Extension
Mechanisms

Figure 4: Foundation Packages

Contents

4. Foundation Package: Core

5. Foundation Package: Auxiliary Elements

6. Foundation Package: Extension Mechanisms

7. Foundation Package: Data types

UML v 1.1, Semantics 15

4. FOUNDATION PACKAGE: CORE

4.1 OVERVIEW

The Core package is the most fundamental of the subpackages that compose the UML Foundation
package. It defines the basic abstract and concrete constructs needed for the development of object
models. Abstract metamodel constructs are not instantiable and are commonly used to reify key
constructs, share structure, and organize the model. Concrete metamodel constructs are instantiable
and reflect the modeling constructs used by object modelers (cf. metamodelers). Abstract
constructs defined in the Core include ModelElement, GeneralizableElement, and Classifier.
Concrete constructs specified in the Core include Class, Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and defines an
architectural backbone (“skeleton”) for attaching additional language constructs such as
metaclasses, metaassociations, and metaattributes. Although the Core package contains sufficient
semantics to define the remainder of UML, it is not the UML meta-metamodel. It is the underlying
base for the Foundation package, which in turn serves as the infrastructure for the rest of language.
In other packages the Core is extended by adding metaclasses to the backbone using
generalizations and associations.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Core package.

4.2 ABSTRACT SYNTAX

The abstract syntax for the Core package is expressed in graphic notation in Figure 5 and Figure 6.
Figure 5 shows the model elements that form the structural backbone of the metamodel. Figure 6
shows the model elements that define relationships.

16 UML v 1.1, Semantics

DataType

Element

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute
initialValue : Expression * Method

body : ProcedureExpression
specification

1
Operation

specification : Uninterpreted
isPolymorphic : Boolean
concurrency : CallConcurrencyKind

*1

ElementOwnership
visibility : VisibilityKind

Class
isActive : Boolean

namespace

0..1

Namespace

ownedElement

*

constraint*

Constraint
body : BooleanExpression

constrainedElement

1..* {ordered}

ModelElement
name : Name

0..1

*

*

1..*

Interface

0..1

BehavioralFeature
isQuery : Boolean

parameter*

{ordered}

feature
*{ordered}

Feature
ownerScope : ScopeKind
visibility : VisibilityKind

owner

1

feature
*

{ordered}

StructuralFeature
multiplicity : Multiplicity
changeable : ChangeableKind
targetScope : ScopeKind

type
1

type1

*

Parameter
defaultValue : Expression
kind : ParameterDirectionKind

0..1

*

realization

*

Classifier

*

1

*1

1

*

*

*

specification

*

Figure 5: Core Package−Backbone

UML v 1.1, Semantics 17

{ordered}

AssociationClass

Class

generalization* subtype 1

supertype 1

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

specialization*

Generalization

discriminator : Name * 1

1*

Namespace

connection

2..* 1
Association

qualifier * {ordered}

Attribute

associationEnd 0..1

type

1

associationEnd

*

*

AssociationEnd

isNavigable : Boolean
isOrdered : Boolean
aggregation : AggregationKind
multiplicity : Multiplicity
changeable : ChangeableKind
targetScope : ScopeKind

2..* 1

*

0..1

specification

*

Classifier

1 *

**

client *

requirement

*

supplier

*

ModelElement

name : Name

provision

*

Dependency

description : String

*

*

*

*

participant

Figure 6: Core Package−Relationships

The following metaclasses are contained in the Core package:

Association

An association defines a semantic relationship between classifiers; the instances of an association
are a set of tuples relating instances of the classifiers. Each tuple value may appear at most once.

In the metamodel an Association is a declaration of a semantic relationship between Classifiers,
such as Classes. An Association has at least two AssociationEnds. Each end is connected to a
Classifierthe same Classifier may be connected to more than one AssociationEnds in the same
Association. The Association represents a set of connections among instances of the Classifiers.
An instance of an Association is a Link, which is a tuple of Instances drawn from the
corresponding Classifiers.

Attributes

name The name of the Association which, in combination with its associated Classifiers, must
be unique within the enclosing namespace (usually a Package).

 Associations

connection An Association consists of at least two AssociationEnds, each of which represents a
connection of the association to a Classifier. Each AssociationEnd specifies a set of
properties that must be fulfilled for the relationship to be valid. The bulk of the structure
of an Association is defined by its AssociationEnds.

18 UML v 1.1, Semantics

 AssociationClass

 An association class is an association that is also a class. It not only connects a set of classifiers but
also defines a set of features that belong to the relationship itself and not any of the classifiers.

 In the metamodel an AssociationClass is a declaration of a semantic relationship between
Classifiers which has a set of features of its own. AssociationClass is a subclass of both
Association and Class (i.e. each AssociationClass is both an Association and a Class). Therefore,
an AssociationClass has both AssociationEnds and Features.

 AssociationEnd

 An association end is an endpoint of an association, which connects the association to a classifier.
Each association end is part of one association; the association-ends of each association are
ordered.

 In the metamodel an AssociationEnd is part of an Association and specifies the connection of an
Association to a Classifier. It has a name and defines a set of properties of the connection. e.g.,
which Classifier the Instances must conform to, their multiplicity, and if they may be reached from
another Instance via this connection.

 In the following descriptions when referring to an association end for a binary association, the
source end is the other end; the target end is the one whose properties are being discussed.

 Attributes

aggregation When placed on a target end, specifies whether the target end is an aggregation with
respect to the source end. Only one end can be an aggregation. Possibilities are:

 none The end is not an aggregate.

 aggregate The end is an aggregate; the other end is therefore a part and must have the aggregation
value of none. The part may be contained in other aggregates.

 composite The end is a composite; the other end is therefore a part and must have the aggregation
value of none. The part is strongly owned by the composite and may not be part of any
other composite.

changeable When placed on a target end, specifies whether an instance of the Association may be
modified from the source end. Possibilities are:

 none No restrictions on modification.

 frozen No links may be added after the creation of the source object.

 addOnly Links may be added at any time from the source object, but once created a link may not
be removed before at least one participating object is destroyed.

isOrdered When placed on a target end, specifies whether the set of links from the source instance
to the target instance is ordered. The ordering must be determined and maintained by
Operations that add links; it represents additional information not inherent in the objects
or links themselves. A set of ordered links can be scanned in order. The alternative is that
the links form a set with no inherent ordering.

UML v 1.1, Semantics 19

isNavigable When placed on a target end, specifies whether traversal from a source instance to its
associated target instances is possible. Specification of each direction across the
Association is independent.

multiplicity When placed on a target end, specifies the number of target instances that may be
associated with a single source instance across the given Association. (See Multiplicity.)

name The role name of the end. When placed on a target end, provides a name for traversing
from a source instance across the association to the target instance or set of target
instances. It represents a pseudo-attribute of the source classifier, i.e. it may be used in
the same way as an Attribute, and must be unique with respect to Attributes and other
pseudo-attributes of the source Classifier.

targetScope Specifies whether the targets are ordinary Instances or are Classifiers. Possibilities are:

 instance Each link of the Association contains a reference to an Instance of the target Classifier.
This is the setting for a normal Association.

 classifier Each link of the Association contains a reference to the target Classifier itself. This
represents a way to store meta-information.

 Associations

qualifier An optional list of qualifier Attributes for the end. If the list is empty then the
Association is not qualified.

specification Designates zero or more Classifiers that specify the Operations that may be applied to an
Instance accessed by the AssociationEnd across the Association. These determine the
minimum interface that must be realized by the actual Classifier attached to the end to
support the intent of the Association. May be an Interface or another Classifier.

type Designates the Classifier connected to the end of the Association. It may not be an
Interface because they have no physical structure.

 Attribute

 An attribute is a named slot within a classifier that describes a range of values that instances of the
classifier may hold.

 In the metamodel an Attribute is a named piece of the declared state of a Classifier, particularly the
range of values that Instances of the Classifier may hold.

 (The following list includes properties from StructuralFeature which has no other subclasses in
the current metamodel.)

 Attributes

changeable Whether the value may be modified after the object is created. Possibilities are:

 none No restrictions on modification.

20 UML v 1.1, Semantics

 frozen The value may not be altered after the object is instantiated and its values initialized. No
additional values may be added to a set.

 addOnly (Meaningful only if the multiplicity is not fixed to a single value.) Additional values may
be added to the set of values, but once created a value may not be removed or altered.

initialValue An Expression specifying the value of the attribute upon initialization. It is meant to be
evaluated at the time the object is initialized. (Note that an explicit constructor may
supercede an initial value.)

multiplicity The possible number of data values for the attribute that may be held by an instance. The
cardinality of the set of values is an implicit part of the attribute. (See Multiplicity.) In the
common case in which the multiplicity is 1..1 then the attribute is a scalar, i.e., it holds
exactly one value.

 Associations

type Designates the classifier whose instances are values of the attribute. Must be a Class or
DataType.

 BehavioralFeature

 A behavioral feature refers to a dynamic feature of a model element, such as an operation or
method.

 In the metamodel a BehavioralFeature specifies a behavioral aspect of a Classifier. All different
kinds of behavioral aspects of a Classifier, such as Operation and Method, are subclasses of
BehavioralFeature. BehavioralFeature is an abstract metaclass.

 Attributes

isQuery Specifies whether an execution of the Feature leaves the state of the system unchanged.
True indicates that the state is unchanged; false indicates that side-effects may occur..

name The name of the Feature. The entire signature of the Feature (name and parameter list)
must be unique within its containing Classifier.

 Associations

parameters An ordered list of Parameters for the Operation. To call the Operation, the caller must
supply a list of values compatible with the types of the Parameters.

 Class

 A class is a description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections of operations
it provides to its environment.

 In the metamodel a Class describes a set of Objects sharing a collection of Features, including
Operations, Attributes and Methods, that are common to the set of Objects. Furthermore, a Class
may realize zero or more Interfaces; this means that its full descriptor (see Inheritance for the
definition) must contain every Operation from every realized Interface (it may contain additional

UML v 1.1, Semantics 21

operations as well).

 A Class defines the data structure of Objects, although some Classes may be abstract, i.e. no
Objects can be created directly from them. Each Object instantiated from a Class contains its own
set of values corresponding to the StructuralFeatures declared in the full descriptor. Objects do
not contain values corresponding to BehavioralFeatures or class-scope Attributes; all Objects of a
Class share the definitions of the BehavioralFeatures from the Class, and they all have access to
the single value stored for each class-scope attribute.

 Attributes

isActive Specifies whether an Object of the Class maintains its own thread of control. If true, then
an Object has its own thread of control and runs concurrently with other active Objects. If
false, then Operations run in the address space and under the control of the active Object
that controls the caller.

 Classifier

 A classifier is an element that describes behavioral and structural features; it comes in several
specific forms, including class, data type, interface, and others that are defined in other metamodel
packages.

 In the metamodel a Classifier declares a collection of Features, such as Attributes, Methods, and
Operations. It has a name, which is unique in the Namespace enclosing the Classifier. Classifier is
an abstract metaclass.

 Associations

feature A list of Features, like Attribute, Operation, Method, owned by the Classifier.

participant Inverse of specification on association to AssociationEnd. Denotes that the Classifier
participates in an Association.

realization Inverse of specification. A set of Classifiers that implement the Operations of the
Classifier. These may not include Interfaces.

specification A set of Classifiers that specify the Operations that the Classifier must implement. The
Classifier may implement more Operations than contained in the set of Classifiers. The
set may include Interfaces but is not restricted to them.

 Constraint

 A constraint is a semantic condition or restriction.

 In the metamodel a Constraint is a BooleanExpression on an associated ModelElement(s) which
must be true for the model to be well formed. This restriction can be stated in natural language, or
in different kinds of languages with a well-defined semantics. Certain Constraints are predefined
in the UML, others may be user defined. Note that a Constraint is an assertion, not an executable
mechanism; it indicates a restriction that must be enforced by correct design of a system.

 Attributes

body A BooleanExpression that must be true when evaluated for an instance of a system to be
well-formed.

22 UML v 1.1, Semantics

 Associations

constrainedElement A ModelElement or list of ModelElements affected by the Constraint.

 DataType

 A data type is a type whose values have no identity, i.e. they are pure values. Data types include
primitive built-in types (such as integer and string) as well as definable enumeration types (such as
the predefined enumeration type boolean whose literals are false and true).

 In the metamodel a DataType defines a special kind of type in which Operations are all pure
functions, i.e. they can return DataValues but they cannot change DataValues (because they have
no identity).

 Dependency

 A dependency states that the implementation or functioning of one or more elements require the
presence of one or more other elements. All of the elements must exist at the same level of
meaning, i.e., they do not involve a shift in the level of abstraction or realization.

 In the metamodel a Dependency is a directed relationship from a client (or clients) to a supplier (or
suppliers) stating that the client is dependent on the supplier, i.e. the client element requires the
presence and knowledge of the supplier element.

 Dependencies may be stereotyped to differentiate various kinds of dependency.

 Attributes

description A text description of the dependency.

 Associations

client The ModelElement or set of ModelElements that require the presence of the supplier.

supplier The ModelElement or set of ModelElements whose presence is required by the client.

 Element

 An element is an atomic constituent of a model.

 In the metamodel an Element is the top metaclass in the metaclass hierarchy. It has two subclasses:
ModelElement and ViewElement. Element is an abstract metaclass.

ElementOwnership

Element ownership has visibility in a namespace.

In the metamodel ElementOwnership reifies the relationship between ModelElement and
Namespace denoting the ownership of a ModelElement by a Namespace and its visibility outside
the Namespace. See ModelElement.

UML v 1.1, Semantics 23

 Feature

 A feature is a property, like operation or attribute, which is encapsulated within another entity, such as
an interface, a class, or a data type.

 In the metamodel a Feature declares a behavioral or structural characteristic of an Instance of a
Classifier or of the Classifier itself. Feature is an abstract metaclass.

 Attributes

name The name used to identify the Feature within the Classifier or Instance. It must be
unique across inheritance of names from ancestors including names of outgoing
AssociationEnds.

ownerScope Specifies whether Feature appears in each Instance of the Classifier or whether there is
just a single instance of the Feature for the entire Classifier. Possibilities are:

 instance Each Instance of the Classifier holds its own value for the Feature.

 classifier There is just one value of the Feature for the entire Classifier.

visibility Specifies whether the Feature can be used by other Classifier. Visibilities of nested
Namespaces combine so that the most restrictive visibility is the result. Possibilities:

 public Any outside Classifier with visibility to the Classifier can use the Feature.

 protected Any descendent of the Classifier can use the Feature.

 private Only the Classifier itself can use the Feature.

 Associations

owner The Classifier containing the Feature.

 GeneralizableElement

 A generalizable element is a model element that may participate in a generalization relationship.

 In the metamodel a GeneralizableElement can be a generalization of other
GeneralizableElements, i.e. all Features defined in and all ModelElements contained in the
ancestors are also present in the GeneralizableElement. GeneralizableElement is an abstract
metaclass.

 Attributes

isAbstract Specifies whether the GeneralizableElement is an incomplete declaration or not. True
indicates that the GeneralizableElement is an incomplete declaration (abstract), false
indicates that it is complete (concrete). An abstract GeneralizableElement is not
instantiable since it does not contain all necessary information.

isLeaf Specifies whether the GeneralizableElement is an GeneralizableElement with no
descendents. True indicates that it is and may not add descendents, false indicates that it
may add descendents (whether or not it actually has any descendents at the moment).

24 UML v 1.1, Semantics

isRoot Specifies whether the GeneralizableElement is a root GeneralizableElement with no
ancestors. True indicates that it is and may not add ancestors; false indicates that it may
add ancestors (whether or not it actually has any ancestors at the moment).

 Associations

generalization Designates a Generalization whose supertype GeneralizableElement is the immediate
ancestor of the current GeneralizableElement.

specialization Designates a Generalization whose subtype GeneralizableElement is the immediate
descendent of the current GeneralizableElement.

 Generalization

 A generalization is a taxonomic relationship between a more general element and a more specific
element. The more specific element is fully consistent with the more general element (it has all of
its properties, members, and relationships) and may contain additional information.

 In the metamodel a Generalization is a directed inheritance relationship, uniting a
GeneralizableElement with a more general GeneralizableElement in a hierarchy. Generalization
is a subtyping relationship, i.e. an Instance of the more general GeneralizableElement may be
substituted by an Instance of the more specific GeneralizableElement. See Inheritance for the
consequences of Generalization relationships.

 Attributes

discriminator Designates the partition to which the Generalization link belongs. All of the
Generalization links that share a given supertype GeneralizableElement are divided into
groups by their discriminator names. Each group of links sharing a discriminator name
represents an orthogonal dimension of specialization of the supertype
GeneralizableElement. The discriminator need not be unique. The empty string is
considered just another name. If all of the Generalization below a given
GeneralizableElement have the same name (including the empty name) then it is a plain
set of subelements. Otherwise the subelements form two or more groups, each of which
must be represented by one of its members as an ancestor in a concrete descendent
element.

 Associations

supertype Designates a GeneralizableElement that is the generalized version of the subtype
GeneralizableElement.

subtype Designates a GeneralizableElement that is the specialized version of the supertype
GeneralizableElement.

 Interface

 An interface is a declaration of a collection of operations that may be used for defining a service
offered by an instance.

 In the metamodel an Interface contains a set of Operations that together define a service offered
by a Classifier realizing the Interface. A Classifier may offer several services, which means that it
may realize several Interfaces, and several Classifiers may realize the same Interface.

UML v 1.1, Semantics 25

 Interfaces are GeneralizableElements. All Operations declared by an heir must either be new
Operations or be specializations (restrictions) of Operations declared in its ancestor(s).

 Interfaces may not have Attributes, Associations, or Methods.

 Method

 A method is the implementation of an operation. It specifies the algorithm or procedure that effects
the results of an operation.

 In the metamodel a Method is a declaration of a named piece of behavior in a Classifier and
realizes one or a set of Operations of the Classifier.

 Attributes

body The implementation of the Method as a ProceduralExpression.

 Associations

specification Designates an Operation that the Method implements. The Operation must be owned by
the Classifier that owns the Method or be inherited by it. The signatures of the Operation
and Method must match.

 ModelElement

 A model element is an element that is an abstraction drawn from the system being modeled.
Contrast with view element, which is an element whose purpose is to provide a presentation of
information for human comprehension.

 In the metamodel a ModelElement is a named entity in a Model. It is the base for all modeling
metaclasses in the UML. All other modeling metaclasses are either direct or indirect subclasses of
ModelElement. ModelElement is an abstract metaclass.

 Attributes

name An identifier for the ModelElement within its containing Namespace.

 Associations

constraint A set of Constraints affecting the element.

provision Inverse of supplier. Designates a Dependency in which the ModelElement is a supplier.

requirement Inverse of client. Designates a Dependency in which the ModelElement is a client.

namespace Designates the Namespace that contains the ModelElement. Every ModelElement except
a root element must belong to exactly one Namespace. The pathname of Namespace
names starting from the system provides a unique designation for every ModelElement.
The association attribute visibility specifies the visibility of the element outside its
namespace (see Visibility).

 Namespace

 A namespace is a part of a model in which each name has a unique meaning.

26 UML v 1.1, Semantics

 In the metamodel a Namespace is a ModelElement that can own other ModelElements, like
Associations and Classifiers. The name of each owned ModelElement must be unique within the
Namespace. Moreover, each contained ModelElement is owned by at most one Namespace. The
concrete subclasses of Namespace have additional constraints on which kind of elements may be
contained. Namespace is an abstract metaclass.

 Associations

ownedElement A set of ModelElements owned by the Namespace.

 Operation

 An operation is a service that can be requested from an object to effect behavior. An operation has
a signature, which describes the actual parameters that are possible (including possible return
values).

 In the metamodel an Operation is a BehavioralFeature that can be applied to the Instances of the
Classifier that contains the Operation.

 Attributes

concurrency Specifies the semantics of concurrent calls to the same passive instance, i.e. an Instance
originating from a Classifier with isActive=false. (Active instances control access to their
own Operations so this property is usually (although not required in UML) set to
sequential.) Possibilities:

 sequential Callers must coordinate so that only one call to an Instance (on any sequential
Operation) may be outstanding at once. If simultaneous calls occur, then the semantics
and integrity of the system cannot be guaranteed.

 guarded Multiple calls from concurrent threads may occur simultaneously to one Instance (on
any guarded Operation), but only one is allowed to commence; the others are blocked
until the performance of the first Operation is complete. It is the responsibility of the
system designer to ensure that deadlocks do not occur due to simultaneous blocks.
Guarded Operations must perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot be claimed.

 concurrent Multiple calls from concurrent threads may occur simultaneously to one Instance (on
any concurrent Operations). All of them may proceed concurrently with correct
semantics. Concurrent Operations must perform correct in the case of a simultaneous
sequential or guarded Operation or concurrent semantics cannot be claimed.

isPolymorphic Whether the implementation of the Operation may be overridden by subclasses. If true,
then Methods may be defined on subclasses. If false, then the Method realizing the
Operation in the current Classifier is inherited unchanged by all descendents.

specification Description of the effects of performing an Operation, stated as an Expression.

Parameter

A parameter is an unbound variable that can be changed, passed or returned. A parameter may
include a name, type and direction of communication. Parameters are used in the specification of
operations, messages and events, templates etc.

UML v 1.1, Semantics 27

In the metamodel a Parameter is a declaration of an argument to be passed to, or returned from an
Operation, a Signal, etc.

Attributes

defaultValue An Expression whose evaluation yields a value to be used when no argument is supplied
for the Parameter.

kind Specifies what kind of a Parameter is required. Possibilities are:

 in An input Parameter (may not be modified)

 out An output Parameter (may be modified to communicate information to the caller).

 inout An input Parameter that may be modified.

 return A return value of a call.

name The name of the Parameter, which must be unique within its containing Parameter list.

 Associations

type Designates a Classifier to which an argument value must conform.

 StructuralFeature

 A structural feature refers to a static feature of a model element, such as an attribute.

 In the metamodel a StructuralFeature declares a structural aspect of an Instance of a Classifier,
such as an Attribute. It specifies e.g. the multiplicity and changeability of the StructuralFeature.
StructuralFeature is an abstract metaclass.

 See Attribute for the descriptions of the attributes and associations, as it is the only subclass of
StructuralFeature in the current metamodel.

 4.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the Core package.

 Association

 [1] The AssociationEnds must have a unique name within the Association.

 self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)

 [2] At most one AssociationEnd may be an aggregation or composition.

 self.allConnections->select(aggregation <> #none)->size <= 1

 [3] If an Association has 3 or more AssociationEnds then no AssociationEnd may be an aggregation or
composition.

 [4] The connected Classifiers of the AssociationEnds should be included in the Namespace of the Association.

28 UML v 1.1, Semantics

 self.allConnections->forAll (r |
 self.namespace.allContents->includes (r.type))

 Additional operations

 [1] The operation allConnections results in the set of all AssociationEnds of the Association.

 allConnections : Set(AssociationEnd);
 allConnections = self.connection

 AssociationClass

 [1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

 self.allConnections->forAll(ar |
 self.allFeatures->forAll(f |
 f.oclIsKindOf(StructuralFeature) implies ar.name <> f.name))

 [2] An AssociationClass cannot be defined between itself and something else.

 self.allConnections->forAll(ar | ar.type <> self)

 Additional operations

 [1] The operation allConnections results in the set of all AssociationEnds of the AssociationClass, including all
connections defined by its supertype (transitive closure).

 allConnections : Set(AssociationEnd);
 allConnections = self.connection->union(self.supertype->select
 (s | s.oclIsKindOf(Association))->collect (a : Association |
 a.allConnections))->asSet

 AssociationEnd

 [1] The Classifier of an AssociationEnd cannot be an Interface or a DataType unless the DataType is part of a
composite aggregation.

 not self.type.oclIsKindOf (Interface)
 and
 (self.type.oclIsKindOf (DataType) implies
 self.association.connection->select (ae | ae <> self)->forAll (ae |
 ae.aggregation = #composite))

 [2] An Instance may not belong by composition to more than one composite Instance.

 self.aggregation = #composite implies self.multiplicity.max <= 1

 Attribute

 No extra well-formedness rules.

 BehavioralFeature

 [1] All Parameters should have a unique name.

 self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

 [2] The type of the Parameters should be included in the Namespace of the Classifier.

 self.parameter->forAll(p |
 self.owner.namespace.allContents->includes (p.type))

UML v 1.1, Semantics 29

 Additional operations

 [1] The operation hasSameSignature checks if the argument has the same signature as the instance itself.

 hasSameSignature (b : BehavioralFeature) : Boolean;
 hasSameSignature (b) =
 (self.name = b.name) and
 (self.parameter->size = b.parameter->size) and
 Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |
 b.parameter->at(index).type =
 self.parameter->at(index).type and
 b.parameter->at(index).kind =
 self.parameter->at(index).kind
)

 Class

 [1] If a Class is concrete, all the Operations of the Class should have a realizing Method in the full descriptor.

 not self.isAbstract implies self.allOperations->forAll (op |
 self.allMethods->exists (m | m.specification->includes(op)))

 [2] A Class can only contain Classes, Associations, Generalizations, UseCases, Constraints, Dependencies,
Collaborations, and Interfaces as a Namespace.

 self.allContents->forAll->(c |
 c.oclIsKindOf(Class) or
 c.oclIsKindOf(Association) or
 c.oclIsKindOf(Generalization) or
 c.oclIsKindOf(UseCase) or
 c.oclIsKindOf(Constraint) or
 c.oclIsKindOf(Dependency) or
 c.oclIsKindOf(Collaboration) or
 c.oclIsKindOf(Interface)
)

 [3] For each Operation in an Interface provided by the Class, the Class must have a matching Operation.

 self.specification.allOperations->forAll (interOp |
 self.allOperations->exists(op | op.hasSameSignature (interOp)))

 Classifier

 [1] No BehavioralFeature of the same kind may have the same signature in a Classifier.

 self.feature->forAll(f, g |
 (
 (
 (f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or
 (f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or
 (f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))
) and
 f.oclAsType(BehavioralFeature).hasSameSignature(g)
)
 implies f = g)

 [2] No Attributes may have the same name within a Classifier.

 self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p, q |
 p.name = q.name implies p = q)

 [3] No opposite AssociationEnds may have the same name within a Classifier.

 self.oppositeEnds->forAll (p, q | p.name = q.name implies p = q)

30 UML v 1.1, Semantics

 [4] The name of an Attribute may not be the same as the name of an opposite AssociationEnd or a ModelElement
contained in the Classifier.

 self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |
 not self.allOppositeAssociationEnds->union (self.allContents)->collect (q |
 q.name)->includes (a.name))

 [5] The name of an opposite AssociationEnd may not be the same as the name of an Attribute or a ModelElement
contained in the Classifier.

 self.oppositeAssociationEnds->forAll (o |
 not self.allAttributes->union (self.allContents)->collect (q |
 q.name)->includes (o.name))

 Additional operations

 [1] The operation allFeatures results in a Set containing all Features of the Classifier itself and all its inherited
Features.

 allFeatures : Set(Feature);
 allFeatures = self.feature->union(
 self.supertype.oclAsType(Classifier).allFeatures)

 [2] The operation allOperations results in a Set containing all Operations of the Classifier itself and all its inherited
Operations.

 allOperations : Set(Operation);
 allOperations = self.allFeatures->select(f | f.oclIsKindOf(Operation))

 [3] The operation allMethods results in a Set containing all Methods of the Classifier itself and all its inherited
Methods.

 allMethods : set(Method);
 allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

 [4] The operation allAttributes results in a Set containing all Attributes of the Classifier itself and all its inherited
Attributes.

 allAttributes : set(Attribute);
 allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

 [5] The operation associations results in a Set containing all Associations of the Classifier itself.

 associations : set(Association);
 associations = self.associationEnd.association->asSet

 [6] The operation allAssociations results in a Set containing all Associations of the Classifier itself and all its
inherited Associations.

 allAssociations : set(Association);
 allAssociations = self.associations->union (
 self.supertype.oclAsType(Classifier).allAssociations)

 [7] The operation oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the
Classifier.

 oppositeAssociationEnds : Set (AssociationEnd);
 oppositeAssociationEnds =
 self.association->select (a | a.associationEnd->select (ae |
 ae.type = self).size = 1)->collect (a |
 a.associationEnd->select (ae | ae.type <> self))->union (
 self.association->select (a | a.associationEnd->select (ae |
 ae.type = self).size > 1)->collect (a |

UML v 1.1, Semantics 31

 a.associationEnd))

 [8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds, including the inherited ones,
that are opposite to the Classifier.

 allOppositeAssociationEnds : Set (AssociationEnd);
 allOppositeAssociationEnds = self.oppositeAssociationEnds->union (
 self.supertype.allOppositeAssociationEnds)

 Constraint

 [1] A Constraint cannot be applied to itself.

 not self.constrainedElement->includes (self)

 DataType

 [1] A DataType can only contain Operations, which all must be queries.

 self.allFeatures->forAll(f |
 f.oclIsKindOf(Operation) and f.oclAsType(Operation).isQuery)

 [2] A DataType cannot contain any other ModelElements.

 self.allContents->isEmpty

 Dependency

 No extra well-formedness rules.

 Element

 No extra well-formedness rules.

 ElementOwnership

 No additional well-formedness rules.

 Feature

 No extra well-formedness rules.

 GeneralizableElement

 [1] A root cannot have any Generalizations.

 self.isRoot implies self.generalization->isEmpty

 [2] No GeneralizableElement can have a supertype Generalization to an element which is a leaf.

 self.supertype->forAll(s | not s.isLeaf)

 [3] Circular inheritance is not allowed.

 not self.allSupertypes->includes(self)

 [4] The supertype must be included in the Namespace of the GeneralizableElement.

 self.generalization->forAll(g |
 self.namespace.allContents->includes(g.supertype))

32 UML v 1.1, Semantics

 Additional Operations

[1] The operation allContents returns a Set containing all ModelElements contained in the GeneralizableElement
together with the contents inherited from its supertypes.

 allContents : Set(ModelElement);
 allContents = self.contents->union(
 self.supertype.allContents->select(e |
 e.elementOwnership.visibility = #public or
 e.elementOwnership.visibility = #protected))

 [2] The operation supertype returns a Set containing all direct supertypes.

 supertype : Set(GeneralizableElement);
 supertype = self.generalization.supertype

 [3] The operation allSupertypes returns a Set containing all the GeneralizableElements inherited by this
GeneralizableElements (the transitive closure), excluding the GeneralizableElement itself.

 allSupertypes : Set(GeneralizableElement);
 allSupertypes = self.supertype->union(self.supertype.allSupertypes)

 Generalization

 [1] A GeneralizableElement may only be a subclass of GeneralizableElement of the same kind.

 self.subtype.oclType = self.supertype.oclType

 Interface

 [1] An Interface can only contain Operations.

 self.allFeatures->forAll(f | f.oclIsKindOf(Operation))

 [2] An Interface cannot contain any Classifiers.

 self.allContents->isEmpty

 [3] All Features defined in an Interface are public.

 self.allFeatures->forAll (f | f.visibility = #public)

 Method

 [1] If one of the realized Operations is a query, then so is also the Method.

 self.specification->exists (op | op.isQuery) implies self.isQuery

 [2] The signature of the Method should be the same as the signature of the realized Operations.

 self. specification->forAll (op | self.hasSameSignature (op))

 [3] The visibility of the Method should be the same as for the realized Operations.

 self. specification->forAll (op | self.visibility = op.visibility)

 ModelElement

 Additional Operations

 [1] The operation supplier results in a Set containing all direct suppliers of the ModelElement.

 supplier : Set(ModelElement);

UML v 1.1, Semantics 33

 supplier = self.provision.supplier

 [2] The operation allSuppliers results in a Set containing all the ModelElements that are suppliers of this
ModelElement, including the suppliers of these ModelElements. This is the transitive closure.

 allSuppliers : Set(ModelElement);
 allSuppliers = self.supplier->union(self.supplier.allSuppliers)

 [3] The operation model results in the Model to which a ModelElement belongs.

 model : Set(Model);
 model = self.namespace->union(self.namespace.allSurroundingNamespaces)
 ->select(ns|
 ns.oclIsKindOf (Model))

 Namespace

 [1] If a contained element, which is not an Association or Generalization, has a name then the name must be
unique in the Namespace.

 self.allContents->forAll(me1, me2 : ModelElement |
 (not me1.oclIsKindOf (Association) and not me2.oclIsKindOf (Association) and
 me1.name <> ‘’ and me2.name <> ‘’ and me1.name = me2.name
) implies
 me1 = me2)

 [2] All Associations must have a unique combination of name and associated Classifiers in the Namespace.

 self.allContents->select(oclIsKindOf(Association))->
 forAll(a1, a2 : Association |
 (a1.name = a2.name and
 a1.connection->size = a2.connection->size and
 Sequence{1..a1.connection->size}->forAll(i |
 a1.connection->at(i).type = a2.connection->at(i).type)
) implies
 a1 = a2)

 Additional operations

 [1] The operation contents results in a Set containing all ModelElements contained by the Namespace.

 contents : Set(ModelElement)
 contents = self.ownedElement

 [2] The operation allContents results in a Set containing all ModelElements contained by the Namespace.

 allContents : Set(ModelElement);
 allContents = self.contents

 [3] The operation allVisibleElements results in a Set containing all ModelElements visible outside of the
Namespace.

 allVisibleElements : Set(ModelElement)
 allVisibleElements = self.allContents->select(e |
 e.elementOwnership.visibility = #public)

 [4] The operation allSurroundingNamespaces results in a Set containing all surrounding Namespaces.

 allSurroundingNamespaces : Set(Namespace)
 allSurroundingNamespaces =
 self.namespace->union(self.namespace.allSurroundingNamespaces)

34 UML v 1.1, Semantics

 Operation

 No additional well-formedness rules.

 Parameter

 [1] An Interface cannot be used as the type of a parameter.

 not self.type.oclIsKindOf(Interface)

 StructuralFeature

 [1] The connected type should be included in the current Namespace.

 self.owner.namespace.allContents->includes(self.type)

 4.4 SEMANTICS

 This section provides a description of the dynamic semantics of the elements in the Core. It is
structured based on the major constructs in the core, such as interface, class, and association.

 Inheritance

 To understand inheritance it is first necessary to understand the concept of a full descriptor and a
segment descriptor. A full descriptor is the full description needed to describe an object or other
instance (see Instantiation). It contains a description of all of the attributes, associations, and
operations that the object contains. In a pre-object-oriented language the full descriptor of a data
structure was declared directly in its entirety. In an object-oriented language the description of an
object is built out of incremental segments that are combined using inheritance to produce a full
descriptor for an object. The segments are the modeling elements that are actually declared in a
model; they include elements such as class and other generalizable elements. Each generalizable
element contains a list of features and other relationships that it adds to what it inherits from its
ancestors. The mechanism of inheritance defines how full descriptors are produced from a set of
segments connected by generalization. The full descriptors are implicit, but they define the
structure of actual instances.

 Each kind of generalizable element has a set of inheritable features. For any model element, these
include constraints. For classifiers, these include features (attributes, operations, signal takers, and
methods) and participation in associations. The ancestors of a generalizable element are its
supertypes (if any) together with all of their ancestors (with duplicates removed).

 If a generalizable element has no supertype, then its full descriptor is the same as its segment
descriptor. If a generalizable element has one or more supertypes, then its full descriptor contains
the union of the features from its own segment descriptor and the segment descriptors of all of its
ancestors. For a classifier, no attribute, operation, or signal with the same signature may be
declared in more than one of the segments (in other words, they may not be redefined). A method
may be declared in more than one segment; a method declared in any segment supercedes and
replaces a method with the same signature declared in any ancestor. If two or more methods
nevertheless remain, then they conflict and the model is ill-formed. The constraints on the full
descriptor are the union of the constraints on the segment itself and all of its ancestors; if any of
them are inconsistent then the model is ill-formed.

 In any full descriptor for a classifier, each method must have a corresponding operation. In a
concrete classifier, each operation in its full descriptor must have a corresponding method in the
full descriptor.

UML v 1.1, Semantics 35

 The purpose of the full descriptor is explained under Instantiation.

Instantiation

 The purpose of a model is to describe the possible states of a system and their behavior. The state
of a system comprises objects, values, and links. Each object is described by a full class descriptor;
the class corresponding to this descriptor is the direct class of the object. Similarly each link has a
direct association and each value has a direct data type. Each of these instances is said to be a
direct instance of the classifier from which its full descriptor was derived. An instance is an
indirect instance of the classifier or any of its ancestors.

 The data content of an object comprises one value for each attribute in its full class descriptor (and
nothing more); the value must consistent with the type of the attribute. The data content of a link
comprises a tuple containing a list of instances, one that is an indirect instance of each participant
classifier in the full association descriptor. The instances and links must obey any constraints on
the full descriptors of which they are instances (including both explicit constraints and built-in
constraints such as multiplicity).

 The state of a system is a valid system instance if every instance in it is a direct instance of some
element in the system model and if all of the constraints imposed by the model are satisfied by the
instances.

 The behavioral parts of UML describe the valid sequences of valid system instances that may occur
as a result of both external and internal behavioral effects.

Class

Association

2..*

*

ModelElement

*
Attribute

*

Method * Operation

1*

AssociationRole

*

Interface

*

*

Class

*

*
*

*

1*

*

* Generalization

*

**

 The purpose of a class is to declare a collection of methods, operations, and attributes that fully
describe the structure and behavior of objects. All objects instantiated from a class will have
attribute values matching the attributes of the full class descriptor and support the operations found
in the full class descriptor. Some classes may not be directly instantiated. These classes are said to
be abstract and exist only for other classes to inherit and reuse the features declared by them; no
object may be a direct instance of an abstract class, although an object may be an indirect instance
of one through a subclass that is non-abstract.

 When a class is instantiated to create a new object, a new instance is created , which is initialized
containing an attribute value for each attribute found in the full class descriptor. The object is also
initialized with a connection to the list of methods in the full class descriptor. (NB: An actual
implementation behaves as if there were a full class descriptor, but many clever optimizations are

36 UML v 1.1, Semantics

possible in practice.) Finally, the identity of the new object is returned to the creator. The identity
of every instance in a well-formed system is unique and automatic.

 A class can have generalizations to other classes. This means that the full class descriptor of a class
is derived by inheritance from its own segment declaration and those of its ancestors.
Generalization between classes implies substitutability, i.e. an instance of a class may be used
whenever an instance of a superclass is expected. If the class is specified as a root it cannot be a
subclass of other classes. Similarly, if it is specified as a leaf no other class can be a subclass of the
class.

 Each attribute declared in a class has a visibility and a type. The visibility defines if the attribute is
publicly available to any class, if it is only available inside the class and its subclasses (protected),
or if it can only be used inside the class (private). The targetScope of the attribute declares whether
its value should be an instance (of a subtype) of that type or if it should be (a subtype of) the type
itself. There are two alternatives for the ownerScope of an attribute: it may state that each object
created by the class (or by its subclasses) has its own value of the attribute, or that the value is
owned by the class itself. An attribute also declares how many attribute values should be connected
to each owner (multiplicity), what the initial values should be, and if these attribute values may be
changed: no constraints exists (none), the value cannot be replaced or added to once it has been
initialized (frozen), or new values may be added to a set but not removed or altered (addOnly).

For each operation the operation name, the types of the parameters and the return type(s) are
specified, as well as its visibility (see above). An operation may also include a specification of the
effects of its invocation. The specification can be done in several different ways, e.g. with pre- and
post-conditions, pseudo-code, or just plain text. Each operation declares if it is applicable to the
instances the class or to the class itself (ownerScope). Furthermore, the operation states whether or
not its application will modify the state of the object (isQuery). The operation also states whether
or not the operation may be realized by a different method in a subclass (isPolymorphic). An
operation may have a set of extension points specifying where additional behavior may be inserted
into the operation. A method realizing an operation has the same signature as the operation and a
body implementing the specification of the operation. Methods in descendents override and replace
methods inherited from ancestors (see Inheritance). Each method implements an operation
declared in the class or inherited from an ancestor; the same operation may not be declared more
than once in a full class descriptor. The specification of the method must match the specification of
its matching operation, as defined above for operations. Furthermore, if the isQuery attribute of an
operation is true then it must also be true in any realizing method. However, if it is false in the
operation it may still be true in the method (isQuery=false) does not require that the operation
modify the state The concept of visibility is not relevant for methods.

 Classes may have associations to each other. This implies that objects created by the associated
classes are semantically connected, i.e. that links exist between the objects, according to the
requirements of the associations. See Association below. Associations are inherited by subclasses.

 A class may realize a set of interfaces. This means that each operation found in the full descriptor
for any realized interface must be present in the full class descriptor with the same specification.
The relationship between interface and class is not necessarily one-to-one; a class may offer several
interfaces and one interface may be offered by more than one class. The same operation may be
defined in multiple interfaces that a class supports; if their specifications are identical then there is
no conflict, otherwise the model is ill-formed. Moreover, a class may contain additional operations
besides those found in its interfaces.

 A class acts as the namespace for attributes, outgoing role names on associations, and operations.

UML v 1.1, Semantics 37

Furthermore, since a class acts as a namespace for contained classes, interfaces, and associations
(elements defined within its scope; they do not imply aggregation). The contained classifiers can be
used as ordinary classifiers in the container class. However, the contents cannot be referenced by
anyone outside the container class. If a class inherits another class the visibility of the contents as it
is defined in the superclass guides if the contained elements are visible in the subclass. If the
visibility of an element is public or protected then it is also visible in the subclass, but if the
visibility is private then the element is not visible, and therefor not available, in the subclass.

 Interface

*

Operation

*

Generalization Interface

*
*

**

 The purpose of an interface is to collect a set of operations that constitute a coherent service
offered by classifiers. Interfaces provide a way to partition and characterize groups of operations.
An interface is only a collection of operations with a name; it cannot be directly instantiated.
Instantiable classifiers, such as class or use case, may use interfaces for specifying different
services offered by their instances. Several classifiers may realize the same interface; all of them
must contain at least the operations matching those contained in the interface. The specification of
an operation contains the signature of the operation, i.e. its name, the types of the parameters and
the return type. An interface does not imply any internal structure of the realizing classifier; for
example, it does not define which algorithm to use for realizing an operation. An operation may,
however, include a specification of the effects of its invocation. The specification can be done in
several different ways, e.g. with pre- and post-conditions, pseudo-code, or just plain text.

 Each operation declares if it applies to the instances of the classifier declaring it or to the classifier
itself, e.g. a constructor on a class (ownerScope). Furthermore, the operation states whether or not
its application will modify the state of the instance (isQuery). The operation also states whether or
not all the classes must have the same realization of the operation (isPolymorphic).

 An interface can be a subtype of other interfaces denoted by generalizations. This means that the a
classifier offering the interface must provide not only the operations declared in the interface but
also those declared in the ancestors of the interface. If the interface is specified as a root it cannot
be a subtype of other interfaces. Similarly, if it is specified as a leaf no other interface can be a
subtype of the interface.

 Association

Association

2..*

AssociationRole

2..*

Classifier

1* 1*

 An association declares a connection (link) between instances of the associated classifiers, e.g.
classes. It consists of at least two association-ends, each specifying a connected classifier and a set
of properties which must be fulfilled for the relationship to be valid. The multiplicity property of an
association-end specifies how many instances of the classifier at a given end (the one bearing the
multiplicity value) may be associated with a single instance of the classifier at the other end. A
multiplicity is a range of nonnegative integers. The association-end also states whether or not the
connection may be traversed towards the instance playing that role in the connection (isNavigable),
i.e. if the instance is directly reachable via the association. An association-end also specifies
whether or not an instance playing that role in a connection may be replaced by another instance. It
may state that no constraints exists (none), that the link cannot be modified once it has been
initialized (frozen), or that new links of the association may be added but not removed or altered

38 UML v 1.1, Semantics

(addOnly); these constraints do not affect the modifiability of the objects themselves that are
attached to the links. Moreover, the targetScope specifies if the association-end should be
connected to an instance of (a subtype of) the classifier or (a subtype of) the classifier itself. The
isOrdered attribute of association-end states if the instances related to a single instance at the other
end have an ordering that must be preserved. The order of insertion of new links must be specified
by operations that add or modify links. Note that sorting is a performance optimization and is not
an example of a logically ordered association, because the ordering information in a sort does not
add any information.

 An association may represent an aggregation, i.e. a whole/part relationship. In this case, the
association-end attached to the whole element is designated, and the other association-end of the
association represents the parts of the aggregation. Only binary associations may be aggregations.
Composite aggregation is a strong form of aggregation which requires that a part instance be
included in at most one composite at a time, although the owner may be changed over time.
Furthermore, a composite implies propagation semantics, i.e. some of the dynamic semantics of the
whole is propagated to its parts. For example, if the whole is copied or deleted then so are the parts
as well. A shared aggregation denotes weak ownership, i.e. the part may be included in several
aggregates, and its owner may also change over time. However, the semantics of a shared
aggregation does not imply deletion of the parts when the one of its containers is deleted. Both
kinds of aggregations define a transitive, antisymmetric relationship, i.e. the instances form a
directed, non-cyclic graph. Composition instances form a strict tree (or rather a forest).

 A qualifier declares a partition of the set of associated instances with respect to an instance at the
qualified end (the qualified instance is at the end to which the qualifier is attached). A qualifier
instance comprises one value for each qualifier attribute. Given a qualified object and a qualifier
instance, the number of objects at the other end of the association is constrained by the declared
multiplicity. In the common case in which the multiplicity is 0..1, the qualifier value is unique with
respect to the qualified object, and therefore designates at most one associated object. In the
general case of multiplicity 0..*, the set of associated instances is partitioned into subsets each
selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the qualifier has both
semantic and implementation consequences; in the case of multiplicity 0..*, it has no real semantic
consequences but suggests an implementation that facilities easy access of sets of associated
instances linked by a given qualifier value.

 Note that the multiplicity of a qualifier is given assuming that the qualifier value is supplied. The
“raw” multiplicity without the qualifier is assumed to be 0..*. This is not fully general but it is
almost always adequate, as a situation in which the raw multiplicity is 1 would best be modeled
without a qualifier.

 Note also that a qualified multiplicity whose lower bound is zero indicates that a given qualifier
value may be absent, while a lower bound of 1 indicates that any possible qualifier value must be
present. The latter is reasonable only for qualifiers with a finite number of values (such as
enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

UML v 1.1, Semantics 39

 AssociationClass

AssociationClass

ClassAssociation

 An association may be refined to have its own set of features, i.e. features that do not belong to any
of the connected classifiers, but rather to the association itself. Such an association is called an
association class. It will be both an association, connecting a set of classifiers, and a class, and as
such have features and be included in other associations. The semantics of such an association is a
combination of the semantics of an ordinary association and of a class.

 Miscellaneous

Constraint

constrainedElement

provider

ModelElement

1..*0..*

Dependency
0..*

1..*

dependent1..*

0..*

1..*0..*
0..*

1..*

1..*

0..*

 A constraint is a Boolean expression over one or several elements which must always be true. A
constraint can be specified in several different ways, e.g. using natural language or a constraint
language.

 A dependency specifies that the semantics of a set of model elements requires the presence of
another set of model elements. This implies that if the source is somehow modified the dependents
must probably be modified. The reason for the dependency can be specified in several different
ways, e.g. using natural language or an algorithm, but is often implicit.

 A special kind of classifier, which is similar to class, is data type, but the instances of a data type
are primitive values, i.e. non-objects. For example, the integers and strings are usually treated as
primitive values. A primitive value does not have an identity, so two occurrences of the same value
cannot be differentiated. It is usually used for specification of the type of an attribute. An
enumeration type is a user-definable type comprising a finite number of values.

4.5 STANDARD ELEMENTS

The predefined stereotypes, constraints and tagged values for the Core package are listed in Table 2
and defined in the Standard Elements appendix.

40 UML v 1.1, Semantics

Table 2: CoreStandard Elements

Model Element Stereotypes Constraints Tagged Values

Association implicit
or

Attribute persistence

BehavioralFeature «create»
«destroy»

Class «implementationClass»
«inherits»
«type»

Classifier «process»
«stereotype»
«utility»

location
persistence
responsibility
semantics

Constraints «invariant»
«metaclass»
«postcondition»
«powertype»
«precondition»

Element documentation

Generalization «private»
«subclass»
«subtype»
«thread»
«uses»

complete
disjoint
incomplete
overlapping

Operation semantics

 4.6 NOTES

 In UML Associations can be of three different kinds: ordinary association, composite aggregate,
and shared aggregate. Since the aggregate construct can have several different meanings depending
on the application area, UML gives a more precise meaning to two of these constructs, i.e.
association and composite aggregate, and leaves the shared aggregate more loosely defined in
between.

 Operation is a conceptual construct while Method is the implementation construct. Their common
features, such as having a signature, are expressed in the BehavioralFeature metaclass, and the
specific semantics of the Operation and the Method constructs are defined in the corresponding
subclasses of BehavioralFeature.

UML v 1.1, Semantics 41

 A Usage or Binding dependency can only be established between elements in the same model,
since the semantics of a model cannot be dependent on the semantics of another model. If a
connection is to be established between elements in different models a Trace or Refinement should
be used.

 The AssociationClass construct can be expressed in a few different ways in the metamodel, e.g. as
a subclass of Class, as a subclass of Association, or as a subclass of Classifier. Since an
AssociationClass is a construct being both an association, having a set of association-ends, and a
class, declaring a set of features. The most accurate way of expressing it is as a subclass of both
Association and Class. In this way AssociationClass will have all the properties of the other two
constructs. Moreover, if new kinds of associations containing features (e.g. AssociationDataType)
are to be included in UML, these are easily added as subclasses of Association and the other
Classifier.

 The two terms subtype and subclass are synonyms and mean that an instance of a classifier being a
subtype of another classifier can always be used where an instance of the latter classifier is
expected.

42 UML v 1.1, Semantics

 5. FOUNDATION PACKAGE: AUXILIARY ELEMENTS

 5.1 OVERVIEW

 The Auxiliary Elements package is the subpackage of the Foundation package that defines
additional constructs that extend the Core. Auxiliary elements provide infrastructure for
dependencies, templates, physical structures and view elements.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Auxiliary Elements package.

UML v 1.1, Semantics 43

5.2 ABSTRACT SYNTAX

 The abstract syntax for the Auxiliary Elements package is expressed in graphic notation in Figure 7
and Figure 8. Figure 7 shows the model elements that define dependencies and templates. Figure 8
shows the model elements that define physical structures and view elements.

templateParameter

Refinement

mapping : Mapping

Usage

0..1

Binding

argument 1..* {ordered}

ModelElement
(from Core)

0..1

1..*

Trace

owningDependency

0..1

subDependencies

*

template

0..1
*

requirement

*
Dependency

description : String
0..1

*
client

*
ModelElement

(from Core)

0..1
*

* *

Figure 7: Auxiliary ElementsDependencies and Templates

44 UML v 1.1, Semantics

Comment
Presentation

geometry : Geometry
style : GraphicMarker

Classifier
(from Core)

deployment
*

Node

*

view

* ViewElement

model

*

implementation
*

Component

* *

*

ModelElement
(from Core)

** Presentation

*

*

Figure 8: Auxiliary ElementsPhysical Structures and View Elements

The following metaclasses are contained in the Auxiliary Elements package:

 Binding

 A binding is a relationship between a template and a model element generated from the template. It
includes a list of arguments matching the template parameters. The template is a form that is cloned
and modified by substitution to yield an implicit model fragment that behaves as if it were a direct
part of the model.

 In the metamodel a Binding is a Dependency where the supplier is the template and the client is
the instantiation of the template that performs the substitution of parameters of a template. A
Binding has a list of arguments that replace the parameters of the supplier to yield the client. The
client is fully specified by the binding of the supplier’s parameters and does not add any
information of its own.

 Associations

argument An ordered list of arguments. Each argument replaces the corresponding supplier
parameter in the supplier definition, and the result represents the definition of the client
as if it had been defined directly.

 Comment

 A comment is an annotation attached to a model element or a set of model elements.

 In the metamodel a Comment is a subclass of ViewElement. It is associated with a set of

UML v 1.1, Semantics 45

ModelElements.

 Component

 A component is a reusable part that provides the physical packaging of model elements.

 In the metamodel a Component is a subclass of Class. It provides the physical packaging of its
associated specification elements.

 Associations

deployment The set of Nodes the Component is residing on.

 Dependency (from Core)

 A dependency indicates a semantic relationship among model elements themselves (rather than
instances of them) in which a change to one element may affect or require changes to other
elements.

 In the metamodel a Dependency is a directed relationship from a client (or clients) to a supplier (or
suppliers) stating that the client is dependent on the supplier, i.e. a change to the supplier may
affect the client. The relationship is directed, although the direction may be ignored for certain
subtypes of Dependency (such as Trace).

 To enable grouping of dependencies that belong together, a dependency can serve as a container
for a group of Dependencies. This is useful, because often dependencies are between groups of
elements (such as Packages, Models, Classifiers, etc.). For example, the dependency of one
package on another can be expanded into a set of dependencies among elements within the two
packages

 Associations

client The element that is affected by the supplier element. In some cases (such as Trace) the
direction is unimportant and serves only to distinguish the two elements.

owningDependency Inverse of subDependency.

subDependency A set of more specific dependencies that elaborate a more general dependency.

supplier Inverse of client. Designates the element that is unaffected by a change. In a two-way
relationship (such as some Refinements) this should be the more general element.

 ModelElement (from Core)

 A model element is an element that is an abstraction drawn from the system being modeled.
Contrast with view element, which is an element whose purpose is to provide a presentation of
information for human comprehension.

 In the metamodel a ModelElement is a named entity in a Model. It is the base for all modeling
metaclasses in the UML. All other modeling metaclasses are either direct or indirect subclasses of
ModelElement.

 Each ModelElement can be regarded as a template. A template has a set of templateParameters
that denotes which of the parts of a ModelElement are the template parameters. A ModelElement

46 UML v 1.1, Semantics

is a template when there is at least one template parameter. If it is not a template, a ModelElement
cannot have template parameters. However, such embedded parameters are not usually complete
and need not satisfy well-formedness rules. It is the arguments supplied when the template is
instantiated that must be well-formed.

 Partially instantiated templates are allowed. This is the case when there are arguments provided for
some, but not all templateParameters. A partially instantiated template is still a template, since it
has still parameters.

 Associations

templateParameter An ordered list of parameters. Each parameter designates a ModelElement
within the scope of the overall ModelElement. The designated ModelElement may be a
placeholder for a real ModelElement to be substituted. In particular, the template
parameter element will lack structure. For example, a parameter that is a Class lacks
Features; they are found in the actual argument.

 Node

 A node is a run-time physical object that represents a computational resource, generally having at
least a memory and often processing capability as well, and upon which components may be
deployed.

 In the metamodel a Node is a subclass of Class. It is associated with a set of Components residing
on the Node.

 Associations

component The set of Components residing on the Node.

 Presentation

 A presentation is the relationship between a view element and a model element (or possibly a set of
each). The details are dependent on the implementation of a graphic editor tool.

 In the metamodel Presentation reifies the relationship between ModelElement and ViewElement
and provides the placement and the style of presentation to be used when presenting the
ModelElements.

 Attributes

geometry A description of the geometry of the ViewElement image.

style A description of the graphic markers pertaining to the ViewElement image, such as color,
texture, font, line width, shading, etc.

 Refinement

 A refinement is a relationship between model elements at different semantics levels, such as
analysis and design.

 In the metamodel a Refinement is a Dependency where the clients are derived from the suppliers.
The derivation cannot necessarily be described by an algorithm; human decisions may be required
to produce the clients. The details of specifying the derivation are beyond the scope of UML but

UML v 1.1, Semantics 47

can be indicated with constraints. Refinement can be used to model stepwise refinement,
optimizations, transformations, templates, model synthesis, framework composition, etc.

 Associations

mapping A description of the mapping between the two elements. The mapping is an expression
whose syntax is beyond the scope of UML. For exchange purposes it should be
represented as a string.

Trace

A trace is a conceptual connection between two elements or sets of elements that represent a single
concept at different semantic levels or from different points of view. However, there is no specific
mapping between the elements. The construct is mainly a tool for tracing of requirements. It is also
useful for the modeler to keep track of changes to different models.

In the metamodel a Trace is a Dependency between ModelElements in different Models
abstracting the same part of the system being modeled. Traces therefore denote dependencies at
specification level, rather than runtime dependencies. Thus, Traces do not express information on
the system as such, but rather on the Models of the system. The directionality of the dependency
can usually be ignored.

Usage

A usage is a relationship in which one element requires another element (or set of elements) for its
full implementation or operation. The relationship is not a mere historical artifact but an ongoing
need. Therefore two elements related by usage must be in the same model.

In the metamodel a Usage is a Dependency in which the client requires the presence of the
supplier. How the client uses the supplier, such as a class calling an operation of another class, a
method having an argument of another class, and a method from a class instantiating another class,
is defined in the description of the Usage.

ViewElement

A view element is a textual or graphical presentation of one or more model elements.

In the metamodel a ViewElement is an Element which presents a set of ModelElements to a
reader. It is the base for all metaclasses in the UML used for presentation. All other metaclasses
with this purpose are either direct or indirect subclasses of ViewElement. ViewElement is an
abstract metaclass. The subclasses of this class are proper to a graphic editor tool and are not
specified here.

5.3 WELL-FORMEDNESS RULES
The following well-formedness rules apply to the Auxiliary Elements package.

Binding

[1] The argument ModelElement must conform to the parameter ModelElement in a Binding. In an instantiation it
must be of the same kind.

-- not described in OCL

48 UML v 1.1, Semantics

Comment

No extra well-formedness rules.

Component

No extra well-formedness rules.

Dependency

No extra well-formedness rules.

Additional operations

[1] A Dependency is a composite dependency if it contains other dependencies.

isComposite : Boolean;
isComposite = (self.subDependency->size >= 1);

ModelElement

A model element owns everything connected to it by composition relationships.

A template is a model element with at least one template parameter.

That part of the model owned by a template is not subject to all well-formedness rules. A template
is not directly usable in a well-formed model. The results of binding a template are subject to well-
formedness rules.

Additional operations

[1] A ModelElement is a template when is has parameters.

isTemplate : Boolean;
isTemplate = (self.templateParameter->notEmpty)

[2] A ModelElement is an instantiated template when it related to a template by a Binding relationship.

isInstantiated : Boolean;
isInstantiated = self.requirement->select(oclIsKindOf(Binding))->notEmpty

 [3] The templateArguments are the arguments of an instantiated template, which substitute for template parameters.

templateArguments : Set(ModelElement);
templateArguments = self.requirement->

select(oclIsKindOf(Binding)).oclAsType(Binding).argument

Node

No extra well-formedness rules.

Presentation

No extra well-formedness rules.

Refinement

No extra well-formedness rules.

UML v 1.1, Semantics 49

Trace

[1] A Trace connects two sets of ModelElements from two different Models in the same System.

 self.client->forAll(e1, e2 | e1.model = e2.model) and
 self.supplier->forAll(e1, e2 | e1.model = e2.model) and
 self.client->asSequence->at (1).model <>
 self.supplier->asSequence->at (1).model and
 self.client->asSequence->at (1).model.namespace =

self.supplier->asSequence->at (1).model.namespace

Usage

No extra well-formedness rules.

ViewElement

No extra well-formedness rules.

5.4 SEMANTICS

Whenever the supplier element of a dependency changes, the client element is potentially
invalidated. After such invalidation, a check should be performed followed by possibly changes to
the derived client element. Such a check should be performed after which action can be taken to
change the derived element to validate it again. The semantics of this validation and change is
outside the scope of UML.

Template

An important dynamic consequence is that any model element that is a template cannot be
instantiated. Only a fully instantiated model element can have instances. This applies specifically to
classifier templates.

Also a template is a form, not a final model element. As such, it is not subject to normal well-
formedness rules because it is intentionally incomplete. Only when a template is bound with
arguments can the result be fully subject to well-formedness rules.

A further consequence is that a template must own a fragment of the model that is not part of the
final effective model. When a template is bound, the model fragment that it owns is implicitly
duplicated, the parameters are replaced by the arguments, and the result is implicitly added to the
effective model, as if the effective model had been modeled directly.

ViewElement

The responsibility of view element is to provide a textual and graphical projection of a collection of
model elements. In this context projection means that the view element represents a human
readable notation for the corresponding model elements. The notation for UML can be found in a
separate document.

View elements and model elements must be kept in agreement, but the mechanisms for doing this
are design issues for model editing tools.

5.5 STANDARD ELEMENTS

The predefined stereotypes, constraints and tagged values for the Auxiliary Elements package are

50 UML v 1.1, Semantics

listed in Table 3 and defined in the Standard Elements appendix.

Table 3: Auxiliary ElementsStandard Elements

Model Element Stereotypes Constraints Tagged Values

Comment «requirement» location

Component «document»
«executable»
«file»
«friend»
«library»
«table»

Dependency «becomes»
«call»
«copy»
«deletion»
«derived»
«import»
«instance»
«metaclass»
«powertype»
«send»

UML v 1.1, Semantics 51

6. FOUNDATION PACKAGE: EXTENSION MECHANISMS

6.1 OVERVIEW

The Extension Mechanisms package is the subpackage of the Foundation package that specifies
how model elements are customized and extended with new semantics. It defines the semantics for
stereotypes, constraints, and tagged values.

The UML provides a rich set of modeling concepts and notations that have been carefully designed
to meet the needs of typical software modeling projects. However, users may sometimes require
additional features and/or notations beyond those defined in the UML standard. In addition, users
often need to attach non-semantic information to models. These needs are met in UML by three
built-in extension mechanisms that enable new kinds of modeling elements to be added to the
modeler’s repertoire as well as to attach free-form information to modeling elements. These three
extension mechanisms can be used separately or together to define new modeling elements that can
have distinct semantics, characteristics and notation relative to the built in UML modeling elements
specified by the UML metamodel. Concrete constructs defined in Extension Mechanisms include
Constraint, Stereotype, and TaggedValue.

The UML extension mechanisms are intended for several purposes:

• They can be used to add new modeling elements for use in creating UML models.

• They are used in the UML specification to define standard items that are not considered
interesting or complex enough to be defined directly as UML metamodel elements.

• They are used to define process-specific or implementation language-specific extensions.

• They are used to attach arbitrary semantic and non-semantic information to model elements.

Although it is beyond the scope and intent of this document, it is also possible to extend the UML
metamodel by explicitly adding new metaclasses and other meta constructs. This capability
depends on unique features of certain UML-compatible modeling tools, or direct use of a meta-
metamodel facility, such as the CORBA Meta Object Facility.

The most important of the built-in extension mechanisms is based on the concept of Stereotype.
Stereotypes provide a way of classifying model elements at the object model level and facilitate the
addition of “virtual” UML metaclasses with new metaattributes and semantics. The other built in
extension mechanisms are based on the notion of property lists consisting of tags and values, and
constraints. These allow users to attach additional properties and semantics directly to individual
model elements, as well as to model elements classified by a Stereotype.

A stereotype is a UML model element that is used to classify (or mark) other UML elements so
that they behave in some respects as if they were instances of new “virtual” or "pseudo" metamodel
classes whose form is based on existing “base” classes. Stereotypes thus augment the classification
mechanism based on the built in UML metamodel class hierarchy, and therefore names of new
stereotypes must not clash with the names of predefined metamodel elements or other stereotypes.
Any model element can be marked by at most one stereotype, but any stereotype can be
constructed as a specialization of numerous other stereotypes.

52 UML v 1.1, Semantics

A stereotype may introduce additional values, additional constraints and a new graphical
representation. All model elements that are classified by a particular stereotype (“stereotyped”)
receive these values, constraints and representation. By allowing stereotypes to have associated
graphical representations users can introduce new ways of graphically distinguishing model
elements classified by a particular stereotype.

A stereotype shares the attributes, associations, and operations of its base class but it may have
additional well-formedness constraints as well as a different meaning and attached values. The
intent is that a tool or repository be able to manipulate a stereotyped element the same as the same
ordinary element for most editing and storage purposes, while differentiating it for certain semantic
operations, such as well-formedness checking, code generation, or report writing.

Any modeling element may have arbitrary attached information in the form of a property list
consisting of tag-value pairs. A tag is a name string that is unique for a given element that selects
an associated arbitrary value. Values may be arbitrary but for uniform information exchange they
should be represented as strings. The tag represents the name of an arbitrary property with the
given value. Tags may be used to represent management information (author, due date, status),
code generation information (optimizationLevel, containerClass), or additional semantic
information required by a given stereotype

It is possible to specify a list of tags (with default values, if desired) that are required by a
particular stereotype. Such required tags serve as “pseudoattributes” of the stereotype to
supplement the real attributes supplied by the base element class. The values permitted to such tags
can also be constrained.

It is not necessary to stereotype a model element in order to give it individually distinct constraints
or tagged values. Constraints can be directly attached to a model element (stereotyped or not) to
change its semantics. Likewise, a property list consisting of tag-value pairs can be directly attached
to any model element. The tagged values of a property list allow characteristics to be assigned to
model elements on a flexible, individual basis. Tags are user-definable; certain ones are predefined
and are listed in the Standard Elements appendix.

Constraints or tagged values associated with a particular stereotype are used to extend the
semantics of model elements classified by that stereotype. The constraints must be observed by all
model elements marked with that stereotype.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Extension Mechanisms package.

UML v 1.1, Semantics 53

6.2 ABSTRACT SYNTAX

The abstract syntax for the Extension Mechanisms package is expressed in graphic notation in
Figure 9.

ModelElement
(from Core)

GeneralizableElement
(from Core)

requiredTag *

0..1

stereotype

*

extendedElement

* 0..1

taggedValue

*

TaggedValue
tag : Name
value : Uninterpreted

stereotypeConstraint *

constrainedStereotype

0..1Stereotype
icon : Geometry
baseClass : Name

*

0..1

constrainedElement
1..* {ordered}

*

* 0..1 *

constraint
*

Constraint
(from Core)

*

0..1

1..*

*

Figure 9: Extension Mechanisms

The following metaclasses are contained in the Extension Mechanisms package:

Constraint

The constraint concept allows new semantics to be specified linguistically for a model element.
The specification is written as an expression in a designated constraint language. The language can
be specially designed for writing constraints (such as OCL), a programming language,
mathematical notation, or natural language. If constraints are to be enforced by a model editor tool,
then the tool must understand the syntax and semantics of the constraint language. Because the
choice of language is arbitrary, constraints are an extension mechanism.

In the metamodel, a Constraint directly attached to a ModelElement describes semantic
restrictions that this ModelElement must obey. Also, any Constraints attached to a Stereotype
apply to each ModelElement that bears the given Stereotype.

Attributes

body A boolean expression defining the constraint. Expressions are written as strings in a
designated language. For the model to be well formed, the expression must always yield a
true value when evaluated for instances of the constrained elements at any time when the
system is stable (i.e., not during the execution of an atomic operation).

54 UML v 1.1, Semantics

 Associations

constrainedElement An ordered list of elements subject to the constraint. The constraint applies to
their instances.

constrainedStereotype An ordered list of stereotypes subject to the constraint. The constraint applies to
instances of elements classified by the stereotypes.

 Any particular constraint has either a constrainedElement link or a constrainedStereotype link but
not both.

 ModelElement (as extended)

 Any model element may have arbitrary tagged values and constraints (subject to theses making
sense). A model element may have at most one stereotype whose base class must match the UML
class of the modeling element (such as Class, Association, Dependency, etc.). The presence of a
stereotype may impose implicit constraints on the modeling element and may require the presence
of specific tagged values.

 Associations

constraint A constraint that must be satisfied for instances of the model element. A model element
may have a set of constraints. The constraint is to be evaluated when the system is stable,
i.e., not in the middle of an atomic operation.

stereotype Designates at most one stereotype that further qualifies the UML class (the base class) of
the modeling element. The stereotype does not alter the structure of the base class but it
may specify additional constraints and tagged values. All constraints and tagged values
on a stereotype apply to the model elements that are classified by the stereotype. The
stereotype acts as a “pseudo metaclass” describing the model element.

taggedValue An arbitrary property attached to the model element. The tag is the name of the property
and the value is an arbitrary value. The interpretation of the tagged value is outside the
scope of the UML metamodel. A model element may have a set of tagged values, but a
single model element may have at most one tagged value with a given tag name. If the
model element has a stereotype, then it may specify that certain tags must be present,
providing default values.

 Stereotype

 The stereotype concept provides a way of classifying (marking) elements so that they behave in
some respects as if they were instances of new “virtual” metamodel constructs. Instances have the
same structure (attributes, associations, operations) as a similar non-stereotyped instance of the
same kind; the stereotype may specify additional constraints and required tagged values that apply
to instances. In addition, a stereotype may be used to indicate a difference in meaning or usage
between two elements with identical structure.

 In the metamodel, the Stereotype metaclass is a subtype of GeneralizableElement. TaggedValues
and Constraints attached to a Stereotype apply to all ModelElements classified by that Stereotype.
A stereotype may also specify a geometrical icon to be used for presenting elements with the
stereotype

 Stereotypes are GeneralizableElements. If a stereotype is a subtype of another stereotype, then it

UML v 1.1, Semantics 55

inherits all of the constraints and tagged values from its stereotype supertype and it must apply to
the same kind of base class. . A stereotype keeps track of the base class to which it may be applied.

 Attributes

baseClass Species the name of a UML modeling element to which the stereotype applies, such as
Class, Association, Refinement, Constraint, etc. This is the name of a metaclass, that is,
a class from the UML metamodel itself rather than a user model class.

icon The geometrical description for an icon to be used to present an image of a model
element classified by the stereotype.

 Associations

extendedElement Designates the model elements affected by the stereotype. Each one must be a model
element of the kind specified by the baseClass attribute.

stereotypeConstraint Designates constraints that apply to elements bearing the stereotype.

requiredTag Specifies a set of tagged values, each of which specifies a tag that an element classified
by the stereotype is required to have. The value part indicates the default value for the
tag-value, that is, the tag-value that an element will be presumed to have if it is not
overridden by an explicit tagged value on the element bearing the stereotype. If the value
is unspecified then the element must explicitly specify a tagged value with the given tag.

 TaggedValue

 A tagged value is a (Tag, Value) pair that permits arbitrary information to be attached to any model
element. A tag is an arbitrary name; some tag names are predefined as Standard Elements (see). At
most one tagged value pair with a given tag name may be attached to a given model element. In
other words, there is a lookup table of values selected by tag strings that may be attached to any
model element.

 The interpretation of a tag is (intentionally) beyond the scope of UML; it must be determined by
user or tool convention. It is expected that various model analysis tools will define tags to supply
information needed for their operation beyond the basic semantics of UML. Such information
could include code generation options, model management information, or user-specified
additional semantics.

 Attributes

tag A name that indicates an extensible property to be attached to ModelElements. There is a
single, flat space of tag names. UML does not define a mechanism for name registry but
model editing tools are expected to provide this kind of service. A model element may
have at most one tagged value with a given name. A tag is, in effect, a pseudoattribute
that may be attached to model elements.

value An arbitrary value. The value must be expressible as a string for uniform manipulation.
The range of permissible values depends on the interpretation applied to the tag by the
user or tool; its specification is outside the scope of UML.

 Associations

56 UML v 1.1, Semantics

taggedValue A TaggedValue that is attached to a ModelElement.

requiredTag A TaggedValue that is attached to a Stereotype. A particular TaggedValue can be
attached to either a ModelElement or a Stereotype, but not both.

6.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the Extension Mechanisms package.

 Constraint

 [1] A Constraint attached to a Stereotype must not conflict with Constraints on any inherited Stereotype, or
associated with the baseClass.

 -- cannot be specified with OCL

 [2] A Constraint attached to a stereotyped ModelElement must not conflict with any constraints on the attached
classifying Stereotype, nor with the Class (the baseClass) of the ModelElement

 -- cannot be specified with OCL

 [3] A Constraint attached to a Stereotype will apply to all ModelElements classified by that Stereotype and must
not conflict with any constraints on the attached classifying Stereotype, nor with the Class (the aseClass) of the
ModelElement

 -- cannot be specified with OCL

 Stereotype

 [1] Stereotype names must not clash with any baseClass names

 Stereotype.oclAllInstances->forAll(st | st.baseClass <> self.name)

 [2] Stereotype names must not clash with the names of any inherited Stereotype.

 self.allSupertypes->forAll(st : Stereotype | st.name <> self.name)

 [3] Stereotype names must not clash in the (M2) meta-class namespace, nor with the names of any inherited
Stereotype, nor with any baseClass names

 -- M2 level not accessible

 [4] The baseClass name must be provided; icon is optional is specified in an implementation specific way

 self.baseClass <> ’’

 [5] Tag names attached to a Stereotype must not clash with M2 meta-attribute namespace of the appropriate
baseClass element, nor with Tag names of any inherited Stereotype

 -- M2 level not accessible

 ModelElement

 [1] Tags associated with a ModelElement (directly via a property list or indirectly via a Stereotype) must not clash
with any meta-attributes associated with the Model Element.

 -- not specified in OCL

UML v 1.1, Semantics 57

 [2] A model element must have at most one tagged value with a given tag name.

 self.taggedValue->forAll(t1, t2 : TaggedValue |
 t1.tag = t2.tag implies t1 = t2)

 [3] (Required tags because of stereotypes) If T in modelElement.stereotype.requiredTag.such that T.value =
unspecified then the modelElement must have a tagged value with name = T.name.

 self.stereotype.requiredTag->forAll(tag |
 tag.value = Undefined implies self.taggedValue->exists(t |
 t.tag = tag.tag))

 TaggedValue

No extra well-formedness rules.

 6.4 SEMANTICS

 Constraints, stereotypes, and tagged values apply to model elements, not to instances. They
represent extensions to the modeling language itself, not extensions to the run-time environment.
They affect the structure and semantics of models. These concepts represent metalevel extensions
to UML; however, they do not contain the full power of a heavyweight metamodel extension
language and they are designed such that tools need not implement metalevel semantics to
implement them.

 Within a model, any user-level model element may have a set of constraints and a set of tagged
values. The constraints specify restrictions on the instantiation of the model. An instance of a user-
level model element must satisfy all of the constraints on its model element for the model to be
well-formed. Evaluation of constraints is to be performed when the system is “stable”, that is, after
the completion of any internal operations when it is waiting for external events. Constraints are
written in a designated constraint language, such as OCL, C++, or natural language. The
interpretation of the constraints must be specified by the constraint language.

 A user-level model element may have at most one tagged value with a given tag name. Each tag
name represents a user-defined property applicable to model elements with a unique value for any
single model element. The meaning of a tag is outside the scope of UML and must be determined
by convention among users and model analysis tools.

 It is intended that both constraints and tagged values be represented as strings so that they can be
edited, stored, and transferred by tools that may not understand their semantics. The idea is that the
understanding of the semantics can be localized into a few modules that make use of the values.
For example, a code generator could use tagged values to tailor the code generation process and a
process planning tool could use tagged values to denote model element ownership and status. Other
modules would simply preserve the uninterpreted values (as strings) unchanged.

 A stereotype refers to a baseClass, which is a class in the UML metamodel (not a user-level
modeling element) such as Class, Association, Refinement, etc. A stereotype may be a subtype of
one or more existing stereotypes (which must all refer the same baseClass, or baseClasses that
derive from the same baseClass), in which case it inherits their constraints and required tags and
may add additional ones of its own. As appropriate, a stereotype may add new constraints, a new
icon for visual display, and a list of default tagged values.

 If a user-level model element is classified by an attached stereotype, then the UML base class of
the model element must match the base class specified by the stereotype. Any constraints on the

58 UML v 1.1, Semantics

stereotype are implicitly attached to the model element. Any tagged values on the stereotype are
implicitly attached to the model element; if any of the values are unspecified, then the model
element must explicitly define tagged values with the same tag name or the model is ill-formed.
(This behaves as if a copy of the tagged values from the stereotype is attached to the model
element, so that the default values can be changed). If the stereotype is a subtype of one or more
other stereotypes, then any constraints or tagged values from those stereotypes also apply to the
model element (because they are inherited by this stereotype). If there are any conflicts among
multiple constraints or tagged values (inherited or directly specified) then the model is ill-formed.

 6.5 STANDARD ELEMENTS

 None.

 6.6 NOTES

 From an implementation point of view, instances of a stereotyped class are stored as instances of
the base class with the stereotype name as a property. Tagged values can and should be
implemented as a lookup table (qualified association) of values (expressed as strings) selected by
tag names (represented as strings). Attributes of UML metamodel classes and tag names should be
accessible using a single uniform string-based selection mechanism. This allows tags to be treated
as pseudo-attributes of the metamodel and stereotypes to be treated as pseudo-classes of the
metamodel, permitting a smooth transition to a full metamodeling capability if desired. See the
UML Proposal Summary for discussion of how the OMG Meta Object Facility can be used for
extending the metamodel.

UML v 1.1, Semantics 59

7. FOUNDATION PACKAGE: DATA TYPES

 7.1 OVERVIEW

 The Data Types package is the subpackage of the Foundation package that specifies the different
data types used by UML. This section has a simpler structure than the other packages, since it is
assumed that the semantics of these basic concepts are well known.

 The following sections describes the abstract syntax of the Data Types package

60 UML v 1.1, Semantics

 7.2 ABSTRACT SYNTAX
 The abstract syntax for the Data Types package is expressed in graphic notation in Figure 10.

DataType
(from Core)

AggregationKind
<<enumeration>>

Boolean
<<enumeration>>

BooleanExpression

ChangeableKind
<<enumeration>>

Geometry
body : UninterpretedOperationDirectionKind

<<enumeration>>

Expression
language : Name
body : Uninterpreted

Name
body : String

Integer
<<primitive>>

ParameterDirectionKind
<<enumeration>>

MessageDirectionKind
<<enumeration>>

SynchronousKind
<<enumeration>>

ObjectSetExpression

ScopeKind
<<enumeration>>

String
<<primitive>>

Time
<<primitive>>

TimeExpression

Uninterpreted
<<primitive>>

VisibilityKind
<<enumeration>>

EnumerationsPrimitives

PseudostateKind
<<enumeration>>

ProcedureExpression

GraphicMarker
body : Uninterpreted

CallConcurrencyKind
<<enumeration>>

StructurePrimitive
1

Enumeration

literal

1..*

{ordered}

EnumerationLiteral
name : Name1 1..*

EventOriginKind
<<enumeration>>

ranges 1..*

MultiplicityRange
lower : Integer
upper : Integer

1

Multiplicity

1..*

1

Mapping
body : Uninterpreted

Figure 10: Data Types

 In the metamodel the data types are used for declaring the types of the classes’ attributes. They
appear as strings in the diagrams and not with a separate ‘data type’ icon. In this way, the sizes of
the diagrams are reduced. However, each occurrence of a particular name of a data type denotes the
same data type.

 Note that these data types are the data types used for defining UML and not the data types to be
used by a user of UML. The latter data types will be instances of the DataType metaclass defined
in the metamodel.

 AggregationKind

 In the metamodel AggregationKind defines an enumeration whose values are none, shared, and

UML v 1.1, Semantics 61

composite. Its value denotes what kind of aggregation an Association is.

 Boolean

 In the metamodel Boolean defines an enumeration whose values are false and true.

 BooleanExpression

 In the metamodel BooleanExpression defines a statement which will evaluate to an instance of
Boolean when it is evaluated.

 ChangeableKind

 In the metamodel ChangeableKind defines an enumeration whose values are none, frozen, and
addOnly. Its value denotes how an AttributeLink or LinkEnd may be modified.

Enumeration
In the metamodel Enumeration defines a special kind of DataType whose range is a list of
definable values, called EnumerationLiterals.

EnumerationLiteral
An EnumerationLiteral defines an atom (i.e., with no relevant substructure) that but can be
compared for equality.

 Expression

 In the metamodel an Expression defines a statement which will evaluate to a (possibly empty) set
of instances when executed in a context. An Expression does not modify the environment in which
it is evaluated.

 Geometry

 In the metamodel a Geometry is a triple of Floats, which denotes a position in space.

 GraphicMarker

 In the metamodel GraphicMarker defines the presentation characteristics of view elements, such
as color, texture, font, line width, shading, etc

 Integer

 In the metamodel an Integer is an element in the (infinite) set of integers (…-2, -1, 0, 1, 2…).

 Mapping

 In the metamodel a Mapping is an expression that is used for mapping ModelElements. For
exchange purposes it should be represented as a String.

 MessageDirectionKind

 In the metamodel MessageDirectionKind defines an enumeration whose values are activation and
return. Its value denotes the direction of a Message.

 Multiplicity

 In the metamodel a Multiplicity defines a non-empty set of non-negative integers. A set which only

62 UML v 1.1, Semantics

contains zero ({0}) is not considered a valid Multiplicity. Every Multiplicity has at least one
corresponding String representation.

 MultiplicityRange

 In the metamodel a MultiplicityRange defines a range of integers. The upper bound of the range
cannot be below the lower bound.

 Name

 In the metamodel a Name defines a token which is used for naming ModelElements. Each Name
has a corresponding String representation.

 ObjectSetExpression

 In the metamodel ObjectSetExpression defines a statement which will evaluate to a set of instances
when it is evaluated. ObjectSetExpressions are commonly used to designate the target instances in
an Action.

 OperationDirectionKind

 In the metamodel OperationDirectionKind defines an enumeration whose values are provide and
require. Its value denotes if an Operation is required or provided by a Classifier.

 ParameterDirectionKind

 In the metamodel ParameterDirectionKind defines an enumeration whose values are in, inout, out,
and return. Its value denotes if a Parameter is used for supplying an argument and/or for returning
a value.

Primitive

 A Primitive defines a special kind of simple DataType, without any relevant substructure.

 ProcedureExpression

 In the metamodel ProcedureExpression defines a statement which will result in an instance of
Procedure when it is evaluated.

 PseudostateKind

 In the metamodel VisibilityKind defines an enumeration whose values are initial, deepHistory,
shallowHistory, join, fork, branch, and final. Its value denotes the possible pseudo states in a state
machine.

 ScopeKind

 In the metamodel ScopeKind defines an enumeration whose values are classifier and instance. Its
value denotes if the stored value should be an instance of the associated Classifier or the Classifier
itself.

 String

 In the metamodel a Sting defines a stream of text.

Structure

 A Structure defines a special kind of DataType, that has a fixed number of named parts.

UML v 1.1, Semantics 63

 SynchronousKind

 In the metamodel SynchronousKind defines an enumeration whose values are synchronous and
asynchronous. Its value denotes what kind of Message a CallAction will create when executed.

 Time

 In the metamodel a Time defines a value representing an absolute or relative moment in time and
space. A Time has a corresponding string representation.

 TimeExpression

 In the metamodel TimeExpression defines a statement which will evaluate to an instance of Time
when it is evaluated.

 Uninterpreted

 In the metamodel an Uninterpreted is a blob, the meaning of which is domain-specific and
therefore not defined in UML.

 VisibilityKind

 In the metamodel VisibilityKind defines an enumeration whose values are public, protected, and
private. Its value denotes how the element to which it refers is seen outside the enclosing name
space.

64 UML v 1.1, Semantics

 PART 3. BEHAVIORAL ELEMENTS
 Part 3 defines the superstructure for behavioral modeling in UML, the Behavioral Elements
package. The Behavioral Elements package consists of four lower-level packages: Common
Behavior, Collaborations, Use Cases, and State Machines. Common Behavior specifies the core
concepts required for behavioral elements. The Collaborations package specifies a behavioral
context for using model elements to accomplish a particular task. The Use Case package specifies
behavior using actors and use cases. The State Machines package defines behavior using finite-
state transition systems.

Use Cases State MachinesCollaborations

Common
Behavior

Figure 11: Behavioral Elements Packages

 Contents

 8. Behavioral Elements Package: Common Behavior

 9. Behavioral Elements Package: Collaborations

 10. Behavioral Elements Package: Use Cases

 11. Behavioral Elements Package: State Machines

UML v 1.1, Semantics 65

 8. BEHAVIORAL ELEMENTS PACKAGE: COMMON
BEHAVIOR

 8.1 OVERVIEW

 The Common Behavior package is the most fundamental of the subpackages that compose the
Behavioral Elements package. It specifies the core concepts required for dynamic elements and
provides the infrastructure to support Collaborations, State Machines and Use Cases.

 The following sections describe the abstract syntax, well-formedness rules and semantics of the
Common Behavior package.

66 UML v 1.1, Semantics

8.2 ABSTRACT SYNTAX
The abstract syntax for the Common Behavior package is expressed in graphic notation in Figure
12, Figure 13 and Figure 14. Figure 12 shows the model elements that define Requests, which
include Signals and Operations. Figure 13 illustrates the model elements that specify various
actions, such as CreateAction, CallAction and SendAction. Figure 14 shows the model elements
that define Instances and Links.

ModelElement
(from Core)

GeneralizableElement
(from Core)

Operation
(from Core)

signal 1

reception

0..*
Reception

isPolymorphic : Boolean
specification : Uninterpreted

0..1

Signal1

0..*

parameter 0..*

{ordered}

Parameter
(from Core)

0..1

0..*
Request

context *

BehavioralFeatureraisedException

*

Exception

**

Figure 12: Common BehaviorRequests

UML v 1.1, Semantics 67

Classifier
(from Core)

DestroyActionUninterpretedAction
body : String

ModelElement
(from Core)

CallAction
mode : SynchronousKind

LocalInvocation SendAction
0..*

CreateActioninstantiation

1 0..*1

ReturnAction

TerminateAction

actualArgument
*

{ordered}

Argument
value : Expression

0..1

request

0..1

Request

0..*

0..1

ActionSequence

action

*

Action
recurrence : Expression
target : ObjectSetExpression
isAsynchronous : Boolean
script : String

*

0..1

0..10..*

0..1
*

Figure 13: Common BehaviorActions

LinkObject

DataValueObject

Link

ModelElement
(from Core)

association1

*

connection

2..*1

Association
(from Core)

1Link

1

*

linkRole

2 .. *

associationEnd
1

AssociationEnd
(from Core)2..*1

*

classifier1..*

Classifier
(from Core)

*

instance

1

linkEnd

*

LinkEnd1

2 .. *

1

* *

attribute1

Attribute
(from Core)

*
value1

1Instance

1..*

*

1* slot

0..* AttributeLink

*

1

*
1

1 0..*

*

specification1

Request

*

argument

*

*

receiver

1

*

MessageInstance*

1
sender

1

Instance

*

*

*

1

*

1

Figure 14: Common BehaviorInstances and Links

The following metaclasses are contained in the Common Behavior package:

68 UML v 1.1, Semantics

 Action
 An action is a specification of an executable statement that forms an abstraction of a
computational procedure that results in a change in the state of the model, realized by sending a
message to an object or modifying a value of an attribute.

 In the metamodel an Action is a part of an ActionSequence and may contain a specification of a
target as well as a specification of the arguments (actual parameters) of the dispatched Request.

 The target metaattribute is of type ObjectSetExpression which, when executed, resolves into zero
or more specific Instances which are the intended recipients of the dispatched Request. Similarly,
it is associated with a list of Arguments which at runtime are resolved to the actual arguments of
the Request. The recurrence metaattribute specifies how many times the resulted Request should
be sent every time the Action is executed.

 Action is an abstract metaclass.

 Attributes

recurrence An Expression stating how many times the Action should be performed.

target An ObjectSetExpression which determines the target of the Action.

 Associations

request The specification of the Request being dispatched by the Action.

actualArgument A sequence of Expressions which determines the actual arguments needed when
evaluating the Action.

 ActionSequence
 An action sequence is a collection of actions.

 In the metamodel an ActionSequence is an aggregation of Actions. It describes the behavior of
the owning State or Transition.

 Associations

action A sequence of Actions performed sequentially as an atomic unit.

 Argument
 An argument represents the actual values passed to a dispatched request and aggregated within an
action.

 In the metamodel, an Argument is a part of an Action and contains a metaattribute, value, of type
Expression.

 Attributes

value An Expression determining the actual Instance when evaluated.

UML v 1.1, Semantics 69

 AttributeLink
 An attribute link is a named slot in an instance, which holds the value of an attribute.

 In the metamodel AttributeLink is a piece of the state of an Instance and holds the value of an
Attribute.

 Associations

value The Instance which is the value of the AttributeLink.

attribute The Attribute from which the AttributeLink originates.

 CallAction
 A call action is an action resulting in an invocation of an operation on an instance. A call action
can be synchronous or asynchronous, indicating whether the operation is invoked synchronously
or asynchronously.

 In the metamodel, the CallAction is a subtype of Action. The designated instance or set of
instances is specified via the target expression, and the actual arguments are designated via the
argument association inherited from Action. The resulting operation is specified by the
dispatched Request, which in that case should be an Operation.

 Attributes

mode An enumeration which states if the dispatched Operation will be synchronous or
asynchronous.

 synchronous Indicates that the caller waits for the completion of the execution of the
Operation.

 asynchronous Indicates that the caller does not wait for the completion of the execution of the
Operation but continues immediately.

 CreateAction
 A create action is an action resulting a creation of an instance of some classifier.

 In the metamodel, the CreateAction is a subtype of Action. The Classifier class is designated by
the instantiation association of the CreateAction.

 Associations

classifier The Classifier of which an Instance will be created of when the CreateAction is
performed.

DestroyAction
A destroy action is an action results in the destruction of an object specified in the action.

70 UML v 1.1, Semantics

In the metamodel a DestroyAction is a subclass of Action. The designated object is specified by
the target association of the Action.

 DataValue
 A data value is an instance with no identity.

 In the metamodel DataValue is a subclass of Instance which cannot change its state, i.e. all
Operations that are applicable to it are pure functions or queries. DataValues are typically used
as attribute values.

 Exception
 An exception is a signal raised by behavioral features typically in case of execution faults. In the
metamodel, Exception is derived from Signal. An Exception is associated with the
BehavioralFeature that raises it.

 Attributes

body A description of the Exception in a format not defined in UML.

 Associations

behavioralFeature The set of BehavioralFeatures that raise the exception.

 Instance
 The instance construct defines an entity to which a set of operations can be applied and which has
a state that stores the effects of the operations.

 In the metamodel Instance is connected to at least one Classifier which declares its structure and
behavior. It has a set of attribute values and is connected to a set of Links, both sets matching the
definitions of its Classifiers. The two sets implements the current state of the Instance. Instance
is an abstract metaclass.

 Associations

attributeLink The set of AttributeLinks that holds the attribute values of the Instance.

linkEnd The set of LinkEnds of the connected Links that are attached to the Instance.

classifier The set of Classifiers that declare the structure of the Instance.

 Link
 The link construct is a connection between instances.

 In the metamodel Link is an instance of an Association. It has a set of LinkEnds that matches the
set of AssociationEnds of the Association. A Link defines a connection between Instances.

 Associations

association The Association the is the declaration of the Link.

UML v 1.1, Semantics 71

linkRole The sequence of LinkEnds that constitute the Link.

 LinkEnd
 A link end is an end point of a link.

 In the metamodel LinkEnd is the part of a Link that connects to an Instance. It corresponds to an
AssociationEnd of the Link’s Association.

 Associations

instance The Instance connected to the LinkEnd.

associationEnd The AssociationEnd that is the declaration of the LinkEnd.

 LinkObject
 A link object is a link with its own set of attribute values and to which a set of operations may be
applied.

 In the metamodel LinkObject is a connection between a set of Instances, where the connection
itself may have a set of attribute values and to which a set of Operations may be applied. It is a
subclass of both Object and Link .

LocalInvocation
A local invocation is a special type of action that invokes a local operation (an operation on
“self”). This type of invocation takes place without the mediation of the state machine; i.e. it does
not generate a call event. The invocation of a local utility procedure of an object is an example of
a LocalInvocation. In contrast, a CallAction on “self” always results in an event.

In the metamodel, LocalInvocation is associated with the Operation that it invokes through the
relationship to Request. The argument association specifies the arguments of the Operation are
specified by the argument association. (inherited from Action).

 MessageInstance
 A message instance reifies a communication between two instances.

 In the metamodel MessageInstance is an instance of a subclass of a Request, like Signal and
Request. It has a sender, a receiver, and may have a set of arguments, all being Instances.

 Associations

specification The Request from which the MessageInstance originates.

sender The Instance which sent the MessageInstance.

receiver The Instance which receives the MessageInstance.

arguments The sequence of Instances being the arguments of the MessageInstance.

72 UML v 1.1, Semantics

 Object
 An object is an instance that originates from a class.

 In the metamodel Object is a subclass of Instance and it originates from at least one Class. The
set of Classes may be modified dynamically, which means that the set of features of the Object is
changed during its life-time.

 Reception
 A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal.
The reception designates a signal and specifies the expected behavioral response. A reception is a
summary of expected behavior; the details of handling a signal are specified by a state machine.

 In the metamodel Reception is a subclass of BehavioralFeature and declares that the Classifier
containing the feature reacts to the signal designated by the reception feature. The isPolymorphic
attribute specifies whether the behavior is polymorphic or not; a true value indicates that the
behavior is not always the same and may be affected by state or subclassing. The specification
indicates the expected response to the signal.

 Attributes

isPolymorphic Whether the response to the Signal is fixed. If true, then the response may depend on
state of the Classifier and may be overridden on subclasses. If false, then response to the
signal is always the same, regardless of state of the Classifier, and it may not be
overridden by subclasses.

specification A description of the effects of the classifier receiving a signal, stated as an Expression.

 Associations

signal The Signal that the Classifier is prepared to handle.

 Request
 A request is a specification of a stimulus being sent to instances. It can either be an operation or a
signal.

 In the metamodel a Request is an abstract subclass of BehavioralFeature.

ReturnAction

A return action is an action that results in returning a value to a caller.

In the metamodel ReturnAction values are represented as the arguments inherited from an Action.

SendAction

A send action is an action that results in the (asynchronous) sending of a signal. The signal can be
directed to a set of receivers via objectSetExpression, or sent implicitly to an unspecified set of
receivers, defined by some external mechanism. For example, if the signal is an exception, the
receiver is determined by the underlying runtime system mechanisms.

In the metamodel SendAction is associated with the Signal by the request association inherited

UML v 1.1, Semantics 73

from Action. The actual arguments are specified by the argument association, inherited from
Action.

.

 Signal
 A signal is a specification of an asynchronous stimulus communicated between instances. The
receiving instance handles the signal by a state machine. Signal is a generalizeable element and is
defined independently of the classes handling the signal. A reception is a declaration that a class
handles a signal, but the actual handling is specified by a state machine.

 In the metamodel Signal is a subclass of Request that is dispatched by a SendAction. It is a
GeneralizableElement, and aggregates a set of Parameters. A Signal is always asynchronous.

 Associations

reception A set of Receptions that indicate Classes prepared to handle the signal.

TerminateAction
A terminate action results in self-destruction of an object.

In the metamodel TerminateAction is a subclass of Action.

UninterpretedAction
An uninterpreted action represents all actions that are not explicitly reified in the UML

Taken to the extreme, any action is a call or raise on some instance (e.g. Smalltalk). However, in
more practical terms, actions such as assignments and conditional statements can be captured as
uninterpreted actions, as well as any other language specific actions that are neither call nor send
actions

 Attributes

body The definition of the action.

8.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the Common Behavior package.

AttributeLink

[1] The type of the Instance must match the type of the Attribute.

self.value.classifier->includes(self.attribute.type)

 CallAction

[1] The types and order of actual arguments for an Action must match the parameters of the Request.

 (self.actualArgument->size > 0)

74 UML v 1.1, Semantics

 implies (Sequence{1..self.actualArguments->size})->
 forAll (x |

 self.actualArgument->at(x).type =
 self.message.parameter->at(x).type)
 Note: parameter referes to Signal or Operation (downcast)

[2] A CallAction must have exactly one target

 self.target->size = 1

[3] The type of the dispatched Request should be Operation.

 self.message->notEmpty
 and
 self.message.oclIsTypeOf(Operation)

 CreateAction

 [1] A CreateAction does not have a target expression.

 self.target->isEmpty

 DestroyAction

 [1] A DestroyAction should not have arguments

 self.actualArgument->size = 0

DataValue

[1] A DataValue originates from exactly one Classifier, which is a DataType.

(self.classifier->size = 1)
and
self.classifier.oclIsKindOf(DataType)

[2] A DataValue has no AttributeLinks.

self.slot->isEmpty

Instance

[1] The AttributeLinks matches the declarations in the Classifiers.

self.slot->forAll (al |
self.classifier->exists (c |

c.allAttributes->includes (al.attribute)))

[2] The Links matches the declarations in the Classifiers.

self.allLinks->forAll (l |
self.classifier->exists (c |

c.allAssociations->includes (l.association)))

[3] If two Operations have the same signature they must be the same.

self.classifier->forAll (c1, c2 |
c1.allOperations->forAll (op1 |

c2.allOperations->forAll (op2 |
op1.hasSameSignature (op2) implies op1 = op2)))

[4] There are no name conflicts between the AttributeLinks and opposite LinkEnds.

UML v 1.1, Semantics 75

self.slot->forAll(al |
not self.allOppositeLinkEnds->exists(le | le.name = al.name))

and
self.allOppositeLinkEnds->forAll(le |

not self.slot->exists(al | le.name = al.name))

 [6] The number of associated Instances in one opposite LinkEnds must match the multiplicity of that
AssociationEnd.

Additional operations

[1] The operation allLinks results in a set containing all Links of the Instance itself.

allLinks : set(Link);
allLinks = self.linkEnd->collect (l | l.link)

[2] The operation allOppositeLinkEnds results in a set containing all LinkEnds of Links connected to the Instance
with another LinkEnd.

allOppositeLinkEnds : set(Link);
allOppositeLinkEnds = self.allLinks->collect (l |

l.linkRole)->select (le | le.instance <> self)

Link

[1] The set of LinkEnds must match the set of AssociationEnds of the Association.

Sequence {1..self.linkRole->size}->forAll (i |
self.linkRole->at (i).associationEnd = self.association.connection->at (i))

[2] There are not two Links of the same Association which connects the same set of Instances in the same way.

self.association.instance->forAll (l |
Sequence {1..self.linkRole->size}->forAll (i |

self.linkRole.instance = l.linkRole.instance) implies self = l)

LinkEnd

[1] The type of the Instance must match the type of the AssociationEnd.

self.instance.classifier->includes (self.associationEnd.type)

LinkObject

[1] One of the Classifiers must be the same as the Association.

self.classifier->includes(self.association)

[2] The Association must be a kind of AssociationClass.

self.association.oclIsKindOf(AssociationClass)

MessageInstance

[1] The type of the arguments must match the parameters of the Request.

self.argument->size = self.specification.parameter->size
and
Sequence {1..self.argument->size}->forAll (i |

self.argument->at (i).classifier->includes (
self.specification.parameter->at (i).type))

-- Note: parameter refers to the parameter of the operation or signal

76 UML v 1.1, Semantics

-- subclasses of request.

Object

[1] Each of the Classifiers must be a kind of Class.

self.classifier->forAll (c | c.oclIsKindOf(Class))

 Signal

[1] A Signal is always asynchronous and is always an invocation.

self.isAsynchronous and self.direction = activation

Reception

[1] A Reception can not be a query.

 not self.isQuery

Request

Additional operations

 [1] The parameter of a Request is the parameter of the Signal or Operation.

 parameter : set(Parameter);
 parameter = if self.oclIsKindOf(Operation)
 then self.oclAsType(Operation).parameter
 else if self.oclIsKindOf(Signal)
 then self.oclAsType(Signal).parameter
 else Set {}
 endif endif

SendAction

 [1] The types and order of actual arguments must match the parameters of the Request (Signal or Operation).

 (self.actualArgument->size > 0)
 implies (Sequence{1..self.actualArgument->size}->
 forAll (x |
 self.actualArgument->at(x).type =
 self.message.parameters->at(x).type))
 -- note: parameters apply to signal or operation (downcast)

[2] The type of the dispatched Request is a Signal.

self.message->notEmpty
and
self.message.oclIsKindOf (Signal)

[3] The target of an Exception should be empty (implicit)

self.message.oclIsKindOf(Exception) implies (self.target = NULL)

 TerminateAction

 [1] A TerminateAction should not have arguments.

 self.actualArgument->size = 0

UML v 1.1, Semantics 77

8.4 SEMANTICS
This section provides a description of the semantics of the elements in the Common Behavior
package.

Object and DataValue

An object is an instance that originates from a classit is structured and behaves according to its
class. All objects originating from the same class are structured in the same way, although each of
them has its own set of attribute links. Each attribute link references an instance, usually a data
value. The number of attribute links with the same name fulfils the multiplicity of the
corresponding attribute in the class. The set may be modified according to the specification in the
corresponding attribute, e.g. each referenced instance must originate from (a subtype of) the type of
the attribute, and attribute links may be added or removed according to the changeable property of
the attribute.

An object may have multiple classes, i.e. it may originate from several classes. In this case, the
object will have all the features declared in all of these classes, both the structural and the
behavioral ones. Moreover, the set of classes (i.e., the set of features that the object conforms to)
may vary over time. New classes may be added to the object and old ones may be detached. This
means that the features of the new classes are dynamically added to the object, and the features
declared in a class which is removed from the object are dynamically removed from the object. No
name clashes between attributes links and opposite link ends are allowed, and each operation which
is applicable to the object should have a unique signature.

Another kind of instance is data value, which is an instance with no identity. Moreover, a data
value cannot change its stateall operations that are applicable to a data value are queries and do
not cause any side effects. Since it is not possible to differentiate between two data values that
appear to be the same, it becomes more of a philosophical issue whether there are several data
values representing the same value or just one for each valueit is not possible to tell. In addition,
a data value cannot change its type.

Link

A link is a connection between instances. Each link is an instance of an association, i.e. a link
connects instances of (subclasses of) the associated classifiers. In the context of an instance an
opposite end defines the set of instances connected to the instance via links of the same association
and each instance is attached to its link via a link-end originating from the same association end.
However, to be able to use a particular opposite end, the corresponding link end attached to the
instance must be navigable. An instance may use its opposite ends to access the associated
instances. An instance can communicate with the instances of its opposite ends and also use
references to them as arguments or reply values in communications.

A link object is a special kind of link, it is at the same time also an object. Since an object may
change it classes this is also true for a link object. However, one of the classes must always be an
association class.

Request, Signal, Exception and Message Instance

A request is a specification of a communication between instances as a result of an instance
performing certain kinds of actions: call action, raise action, destroy action, and return action.

Two kinds of requests exist: signal and operation. The former is used to trigger a reaction in the

78 UML v 1.1, Semantics

receiver in an asynchronous way and without a reply, and the latter is the specification of an
operation, which can be either synchronous or asynchronous and may require a reply from the
receiver to the sender. When an instance communicates with another instance a message instance is
passed between the two instances. It has a sender, a receiver, and possibly a set of arguments
according to the specifying request. A signal may be attached to a classifier, which means that
instances of the classifier will be able to receive that signal. This is facilitated by declaring a
reception by the classifier.

An exception is a special kind of signal, typically used to signal fault situations. The sender of the
exception aborts execution and execution resumes with the receiver of the exception, which may be
the sender itself. Unlike other signals, the receiver is determined implicitly by the interaction
sequence during execution and is not explicitly specified.

The reception of a message instance originating from a call action by an instance causes the
invocation of an operation on the receiver. The receiver executes the method that is found in the
full descriptor of the class that corresponds to the operation. The reception of a signal by an
instance may cause a transition and subsequent effects as specified by the state machine for the
classifier of the recipient. This form of behavior is described in the State Machines package. Note
that the invoked behavior is described by methods and state machine transitions; Operations and
Receptions merely declare that a classifier accepts a given Request but they do not specify the
implementation.

Action

An action is a specification of a computable statement. Each kind of action is defined as a subclass
of action. The following kinds of actions are defined:

• send action is an action in which a message instance is created that causes a signal event for
the receiver(s).

• call action is an action in which a message instance is created that causes an operation to be
invoked on the receiver.

• local invocation is an action that leads to the local execution of an operation.

• create action is an action in which an instance is created based on the definitions of the
specified set of classifiers.

• terminate action is an action in which an instance causes itself to cease to exist.

• destroy action is an action in which an instance causes another instance to cease to exist.

• return action is an action that returns a value to a caller.

• uninterpreted action is an action that has no interpretation in UML.

Each action has a specification of the target object set, which resolves into zero or more instances
when the action is executed. These instances are the recipients of a signal or an operation
invocation. Each action also has a list of expressions, which resolve into a list of actual argument
values when the action is executed. An action is always executed within the context of an instance.

UML v 1.1, Semantics 79

An action may dispatch a request to another instance (e.g. call action, send action). The action
specifies how the receiver and the arguments are to be evaluated for each dispatched instance of the
request. Moreover, the action also specifies how many message instances should be dispatched and
if they should be dispatched sequentially or in parallel (recurrence). In a degenerated case, this
could be used for specification of a condition, which must be fulfilled if the request is to be sent;
otherwise, the request is neglected.

8.5 STANDARD ELEMENTS

The predefined stereotypes, constraints and tagged values for the Common Behavior package are
listed in Table 4 and defined in the Standard Elements appendix.

Table 4: Common BehaviorStandard Elements

Model Element Stereotypes Constraints Tagged Values

Instance persistent

LinkEnd association, global,
local, parameter, self

Request broadcast, vote

80 UML v 1.1, Semantics

9. BEHAVIORAL ELEMENTS PACKAGE: COLLABORATIONS

9.1 OVERVIEW

The Collaborations package is a subpackage of the Behavioral Elements package. It specifies the
concepts needed to express how different elements of a model interact with each other from a
structural point of view. The package uses constructs defined in the Foundation package of UML
as well as in the Common Behavior package.

A Collaboration defines a specific way to use the Model Elements in a Model. It describes how
different kinds of Classifiers and their Associations are to be used in accomplishing a particular
task. The Collaboration defines a restriction of, or a projection of, a Model of Classifiers, i.e. what
properties Instances of the participating Classifiers must have in a particular Collaboration. The
same Classifier or Association can appear in several Collaborations, and also several times in one
Collaboration, each time in a different role. In each appearance it is specified which of the
properties of the Classifier or Association are needed in that particular usage. These properties are
a subset of all the properties of that Classifier or Association. A set of Instances and Links
conforming to the participants specified in the Collaboration cooperate when the specified task is
performed. Hence, the Classifier structure implies the possible collaboration structures of
conforming Instances. A Collaboration may be presented in a diagram, either showing the
restricted views of the participating Classifiers and Associations, or by showing prototypical
Instances and Links conforming to the restricted views.

Collaborations can be used for expressing several different things, like how use cases are realized,
actor structures of ROOM, OORam role models, and collaborations as defined in Catalysis. They
are also used for setting up the context of Interactions and for defining the mapping between the
specification part and the realization part of a Subsystem.

An Interaction defined in the context of a Collaboration specifies the details of the
communications that should take place in accomplishing a particular task. It describes which
Requests should be sent and their internal order.

 The following sections describe the abstract syntax, well-formedness rules and semantics of the
Collaborations package.

UML v 1.1, Semantics 81

9.2 ABSTRACT SYNTAX
The abstract syntax for the Collaborations package is expressed in graphic notation in Figure 15.

{or}

connection2..*

1

base

1AssociationEnd
(from Core)

*

action

1

Action

(from Common Behavior0..*
*

activator 0..1

*

predecessor *

base

1
Association
(from Core)

2..*

1

*

1

/connection 2..*

*AssociationEndRole1 *

/type

1

sender

1

**

receiver

1

* base

1

Classifier
(from Core)

*

availableFeature *

Feature

*

message
1..*

Message

10..*
*

0..1

*

*

1

/ownedElement

*

AssociationRole
multiplicity :

1 *

1

2..*

*represented
Operation

0..1Operation
(from Core)

1

/ownedElement

1..* ClassifierRole

multiplicity : Multiplicity

* 1

1

**

1

*

1

*

*

context

1
interaction

*

Interaction

*

1..*

*

represented
Classifier

0..1

Classifier
(from Core) *Collaboration

1

*

*

0..1

1

1..*

1 *

*

0..1

constrainingElement

*

ModelElement
(from Core)

* *

Namespace
(from Core)

Figure 15: Collaborations

The following metaclasses are contained in the Collaborations package:

AssociationEndRole

An association-end role specifies an endpoint of an association as used in a collaboration.

In the metamodel an AssociationEndRole is part of an AssociationRole and specifies the
connection of an AssociationRole to a ClassifierRole. It is related to the AssociationEnd, declaring
the corresponding part in an Association.

Attributes

multiplicity The number of LinkEnds playing this role in a Collaboration.

82 UML v 1.1, Semantics

 Associations

base An AssociationEndRole is a projection of an AssociationEnd.

 AssociationRole

 An association role is a specific usage of an association needed in a collaboration.

 In the metamodel an AssociationRole specifies a restricted view of an Association used in a
Collaboration. An AssociationRole is a composition of a set of AssociationEndRoles
corresponding to the AssociationEnds of its base Association.

 Attributes

multiplicity The number of Links playing this role in a Collaboration.

 Associations

base An AssociationRole that is a projection of an Association.

 ClassifierRole

 A classifier role is a specific role played by a participant in a collaboration. It specifies a restricted
view of a classifier, defined by what is required in the collaboration.

 In the metamodel a ClassifierRole specifies one participant of a Collaboration, i.e. a role Instances
conform to. It declares a set of Features, which is a subset of those available in the base Classifier.
The ClassifierRole may be connected to a set of AssociationRoles via AssociationEndRoles.

 Attributes

multiplicity The number of Instances playing this role in a Collaboration.

 Associations

availableFeature The subset of Features of the Classifier which is used in the Collaboration

base A ClassifierRole that is a projection of a Classifier.

 Collaboration

 A collaboration describes how an operation or a classifier, like a use case, is realized by a set of
classifiers and associations used in a specific way. The collaboration defines a context for
performing tasks defined by interactions.

 In the metamodel a Collaboration contains a set of ClassifierRoles and AssociationRoles, which
represent the Classifiers and Associations that take part in the realization of the associated
Classifier or Operation. The Collaboration may also contain a set of Interactions that are used for
describing the behavior performed by Instances conforming to the participating ClassifierRoles.

 A Collaboration specifies a view (restriction, slice, projection) of a model of Classifiers. The
projection describes the required relationships between Instances that conform to the participating
ClassifierRoles, as well as the required subset of the Features of these Classifiers. Several

UML v 1.1, Semantics 83

Collaborations may describe different projections of the same set of Classifiers. Hence, a
Classifier can be a base for several ClassifierRoles.

 A Collaboration may also reference a set of ModelElements, usually Classifiers and
Generalizations, needed for expressing structural requirements, such as Generalizations required
between the Classifiers themselves to fulfill the intent of the Collaboration.

 Associations

constrainingElement The ModelElements that add extra constraints, like Generalization and
Constraint, on the ModelElements participating in the Collaboration.

interaction The set of Interactions that are defined within the Collaboration.

ownedElement (Inherited from Namespace) The set of roles defined by the Collaboration. These are
ClassifierRoles and AssociationRoles.

representedClassifier The Classifier the Collaboration is a realization of. (Used if the Collaboration
represents a Classifier.)

representedOperation The Operation the Collaboration is a realization of. Used if the Collaboration
represents an Operation.)

Interaction

An interaction specifies the messages sent between instances performing a specific task. Each
interaction is defined in the context of a collaboration.

In the metamodel an Interaction contains a set of Messages specifying the communication between
a set of Instances conforming to the ClassifierRoles of the owning Collaboration.

Associations

context The Collaboration which defines the context of the Interaction.

message The Messages that specify the communication in the Interaction.

 Message

 A message defines how a particular request is used in an interaction.

 In the metamodel a Message defines a particular usage of a Request in an Interaction. It specifies
the roles of the sender and receiver as well as the dispatching Action. Furthermore, it defines the
relative sequencing of Messages within the Interaction.

 Associations

activator The Message that called the operation whose method contains the current Message.

base The specification of the Message.

receiver The role of the Instance that receives the Message and reacts to it.

84 UML v 1.1, Semantics

predecessor The set of Messages whose completion enables the execution of the current Message. All
of them must be completed before execution begins. Empty if this is the first message in
a method.

sender The role of the Instance that sends the Message and possibly receives a response.

9.3 WELL-FORMEDNESS RULES

The following well-formedness rules apply to the Collaborations package.

AssociationEndRole

[1] The type of the ClassifierRole must conform to the type of the base AssociationEnd.

self.type = self.base.type
or
self.type.allSupertypes->includes (self.base.type)

[2] The type must be a kind of ClassifierRole.

self.type.oclIsKindOf (ClassifierRole)

AssociationRole

[1] The AssociationEndRoles must conform to the AssociationEnds of the base Association.

Sequence{ 1..(self.role->size) }->forAll (index |
self.role->at(index).base = self.base.connection->at(index))

[2] The endpoints must be a kind of AssociationEndRoles.

self.role->forAll(r | r.oclIsKindOf (AssociationEndRole))

ClassifierRole

[1] The AssociationRoles connected to the ClassifierRole must match a subset of the Associations connected to the
base Classifier.

self.allAssociations->forAll(ar |
self.base.allAssociations->exists (a | ar.base = a))

[2] The Features of the ClassifierRole must be a subset of those of the base Classifier.

self.base.allFeatures->includesAll (self.availableFeature)

[3] A ClassifierRole does not have any Features of its own.

self.allFeatures->isEmpty

Collaboration

[1] All Classifiers and Associations of the ClassifierRoles and AssociationRoles in the Collaboration should be
included in the namespace owning the Collaboration.

self.ownedElement->forAll (e |
(e.oclIsKindOf (ClassifierRole) implies

self.namespace.allContents->includes (e.oclAsType(ClassifierRole).base))
and
(e.oclIsKindOf (AssociationRole) implies

self.namespace.allContents->includes (e. oclAsType(AssociationRole).base)))

UML v 1.1, Semantics 85

[2] All the constraining ModelElements should be included in the namespace owning the Collaboration.

self.constrainingElement->forAll (ce |
self.namespace.allContents->includes (ce))

[3] If a ClassifierRole or an AssociationRole does not have a name then it should be the only one with a particular
base.

self.ownedElement->forAll (p |
(p.oclIsKindOf (ClassifierRole) implies

p.name = ’’ implies
self.ownedElement->forAll (q |

q.oclIsKindOf(ClassifierRole) implies
(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies p = q)))
and

(p.oclIsKindOf (AssociationRole) implies
p.name = ’’ implies

self.ownedElement->forAll (q |
q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =
q.oclAsType(AssociationRole).base implies p = q)))

)

[4] A Collaboration may only contain ClassifierRoles and AssociationRoles.

self.ownedElement->forAll (p |
p.oclIsKindOf (ClassifierRole) or
p.oclIsKindOf (AssociationRole))

Interaction

[1] All Signals being bases of Messages must be included in the namespace owning the Interaction.

self.message->forAll (m |
m.base.oclIsKindOf(Signal) implies

self.collaboration.namespace.allContents->includes (m.base))

Message

[1] The sender and the receiver must participate in the Collaboration which defines the context of the Interaction.

self.interaction.context.ownedElement->includes (self.sender)
and
self.interaction.context.ownedElement->includes (self.receiver)

[2] The predecessors and the activator must be contained in the same Interaction.

self.predecessor->forAll (p | p.interaction = self.interaction)
and
self.activator->forAll (a | a.interaction = self.interaction)

[3] The predecessors must have the same activator as the Message.

self.allPredecessors->forAll (p | p.activator = self.activator)

[4] A Message cannot be the predecessor of itself.

not self.allPredecessors->includes (self)

Additional operations

[1] The operation allPredecessors results in the set of all Messages that precede the current one.

86 UML v 1.1, Semantics

allPredecessors : Set(Message);
allPredecessors = self.predecessor->union (self.predecessor.allPredecessors)

9.4 SEMANTICS

This section provides a description of the semantics of the elements in the Collaborations package.
It is divided into two parts: Collaboration and Interaction.

Collaboration

In the following text the term instance of a collaboration denotes the set of instances that together
participate in and perform one specific collaboration.

The purpose of a collaboration is to specify how an operation or a classifier, like a use case, is
realized by a set of classifiers and associations. Together, the classifiers and their associations
participating in the collaboration conform to the requirements of the realized operation or classifier.
The collaboration defines a context in which the behavior of the realized element can be specified
in terms of interactions between the participants of the collaboration. Thus, while a model
describes a whole system, a collaboration is a slice, or a projection, of that model. It defines a
subset of its contents, like classifiers and associations.

A collaboration may be presented at two different levels: specification level or instance level. A
diagram presenting the collaboration at the specification level will show classifier roles and
association roles, while a diagram at the instance level will present instances and links conforming
to the roles in the collaboration.

In a collaboration it is specified what properties instances must have to be able to take part in the
collaboration, i.e. each participant specifies the required set of features a conforming instance must
have. Furthermore, the collaboration also states which associations must exist between the
participants. Not all features of the participating classifiers and not all associations between these
classifiers are always required in a particular collaboration. Because of this, a collaboration is not
actually defined in terms of classifiers, but classifier roles. Thus, while a classifier is a complete
description of instances, a classifier role is a description of the features required in a particular
collaboration; i.e. a classifier role is a projection of a classifier in the sense that its features match a
subset of the classifier’s features. The represented classifier is referred to as the base classifier.
Several classifier roles may have the same base classifier, even in the same collaboration, but their
features may be different subsets of the features of the classifier. These classifier roles then specify
different roles played by (usually different) instances of the same classifier.

In a collaboration the association roles defines what associations are needed between the classifiers
in this context. Each association role represents the usage of an association in the collaboration, and
it is defined between the classifier roles that represents the associated classifiers. The represented
association is called the base association of the association role.

An instance participating in a collaboration instance plays a specific role, i.e. conforms to a
classifier role, in the collaboration. The number of instances that should play one specific role in
one instance of a collaboration is specified by the classifier role (multiplicity). Different instances
may play the same role but in different instances of the collaboration. Since all these instances play
the same role, they must all conform to the classifier role specifying the role. Thus, every instance
must have attribute values corresponding to the attribute specified by the classifier role, and must
participate in links corresponding to the association roles connected to the classifier role. The
instances may, of course, have e.g. more attribute values than required by the classifier role which
would be the case if they originate from a classifier being a subtype of the required one.

UML v 1.1, Semantics 87

Furthermore, one instance may play different roles in different instances of one collaboration; the
instance may, in fact, play multiple roles in the same instance of a collaboration.

If the collaboration represents an operation the context could also include things like parameters,
attributes and classifiers contained in the classifier owning the operation, etc. The interactions then
specify how the arguments, the attribute values, the instances etc. will cooperate to perform the
behavior specified by the operation. A collaboration can be used to specify how an operation or a
classifier, like a use case, is realized by a set of cooperating classifiers. In a collaboration
representing an operation, the base classifiers are the operation’s parameter types together with the
attribute types of the classifier owning the operation. When the collaboration represents a classifier,
its base classifiers can be classifiers of any kind, like classes or subsystems.

How the instances conforming to a collaboration should interact to jointly perform the behavior of
the realized classifier is specified with a set of interactions. The collaboration thus specifies the
context in which these interactions are performed.

Two or more collaborations may be composed in order to refine a superordinate collaboration. For
example, when refining a superordinate use case into a set of subordinate use cases, the
collaborations specifying each of the subordinate use cases may be composed into one
collaboration, which will be a (simple) refinement of the superordinate collaboration. The
composition is done by observing that at least one instance must participate in both sets of
collaborating instances. This instance has to conform to one classifier role in each collaboration. In
the composite collaboration these two classifier roles are merged into a new one, which will
contain all features included in either of the two original classifier roles. The new classifier role
will, of course, be able to fulfill the requirements of both of the previous collaborations, so the
instance participating in both of the two sets of collaborating instances will conform to the new
classifier role.

A collaboration may be a specification of a template. There will not be any instances of such a
template collaboration, but it can be used for generating ordinary collaborations, which may be
instantiated. Template collaborations may have parameters that act like placeholders in the
template. Usually, these parameters would be classifiers and associations, but other kinds of model
elements can also be defined as parameters in the collaboration, like operation or signal. In a
collaboration generated from the template these parameters are refined by other model elements
that make the collaboration instantiable.

Moreover, a collaboration may have a set of constraining model elements, like constraints and
generalizations perhaps together with some extra classifiers. These constraining model elements do
not participate in the collaboration, themselves. They are used for expressing extra constraints on
the participating elements in the collaboration that cannot be covered by the participating roles
themselves. For example, in a template it might be required that two of the classifiers must have a
common ancestor or one classifier must be a subclass of another one. These kinds of requirements
cannot be expressed with association roles, since they express the required links between
participating instances. An extra set of model elements is therefore added to the collaboration.

Interaction

The purpose of an interaction is to specify the communication between a set of interacting
instances performing a specific task. An interaction is defined within a collaboration, i.e. the
collaboration defines the context in which the interaction takes place. The instances performing the
communication specified by the interaction conform to the classifier roles of the collaboration.

An interaction specifies the execution of a set of message instances. These are partially ordered

88 UML v 1.1, Semantics

based on which execution thread they belong to. The execution starts by executing the first
message instance of each thread after it has been dispatched. Within each thread the message
instances are executed in a sequential order while message instances of different threads may be
executed in parallel or in an arbitrary order.

A request is a specification of a communication between instances, such as a call action or a send
action. The request states the name of the operation to be applied to or the event to be raised in the
receiver as well as the arguments. Furthermore, it specifies the direction of the stimulus, i.e.
whether it is an invocation of an operation or a reply, and whether or not it is an asynchronous
stimulus. If it is asynchronous the instance will continue its execution immediately after sending
the message instance, while it will be blocked and waiting for a reply if it is synchronous.

A message is a usage of a request in an interaction. It specifies the type of the sender and the type
of the receiver as well as which messages should have been received and sent before the current
one. Moreover, the message also specifies the expected response of the receiver (script), which
should be in conformance with the specification of the corresponding operation of the receiver.

The interaction specifies the activator and predecessors of each message. The activator is the
message that invoked the procedure of which the current message is a step. Every message except
the initial message of an interaction has an activator. The predecessors are the set of messages that
must be completed before the current message may be executed. The first message in a procedure
has no predecessors. If a message has more than one predecessor, then it represents the joining of
two threads of control. If a message has more than one successor (the inverse of predecessor), then
it indicates a fork of control into multiple threads. The predecessors relationship imposes a partial
ordering on the messages within a procedure, whereas the activator relationship imposes a tree on
the activation of operations. Messages may be executed concurrently subject to the sequential
constraints imposed by the predecessors and activator relationship.

Each message instance is dispatched by performing an action. The action specifies how the
receiver and the arguments are to be evaluated for each dispatched instance of the message.
Moreover, the action also specifies whether iteration or conditionality should be applied and
whether iteration should be applied sequentially or in parallel (recurrence).

 9.4 STANDARD ELEMENTS

 None.

9.5 NOTES

Pattern is a synonym for a template collaboration that describes the structure of a design pattern.
Design patterns involve many nonstructural aspects, such as heuristics for their use and lists of
advantages and disadvantages. Such aspects are not modeled by UML and may be represented as
text or tables.

UML v 1.1, Semantics 89

10.BEHAVIORAL ELEMENTS PACKAGE: USE CASES

10.1 OVERVIEW

The Use Cases package is a subpackage of the Behavioral Elements package. It specifies the
concepts used for definition of the functionality of an entity like a system. The package uses
constructs defined in the Foundation package of UML as well as in the Common Behavior
package.

The elements in the Use Cases package are primarily used to define the behavior of an entity, like a
system or a subsystem, without specifying its internal structure. The key elements in this package
are UseCase and Actor. Instances of use cases and instances of actors interact when the services of
the entity are used. How a use case is realized in terms of cooperating objects, defined by classes
inside the entity, can be specified with a Collaboration. A use case of an entity may be refined to a
set of use cases of the elements contained in the entity. How these subordinate use cases interact
can also be expressed in a Collaboration. The specification of the functionality of the system itself
is usually expressed in a separate use-case model, i.e. a Model stereotyped «useCaseModel». The
use cases and actors in the use-case model are equivalent to those of the system package.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Use Cases package.

90 UML v 1.1, Semantics

10.2 ABSTRACT SYNTAX
The abstract syntax for the Use Cases package is expressed in graphic notation in Figure 15.

UseCaseInstance

Actor

classifier

1..* *

Instance
(from Common Behavior)

realization
*

Classifier
(from Core)

1..* *

*

*

specification

*

UseCase

extensionPoint : list of String

Figure 16: Use Cases

The following metaclasses are contained in the Use Cases package:

Actor

An actor defines a coherent set of roles that users of an entity can play when interacting with the
entity. An actor has one role for each use case with which it communicates.

In the metamodel Actor is a subclass of Classifier. An Actor has a Name and may communicate
with a set of UseCases, and, at realization level, with Classifiers taking part in the realization of
these UseCases. An Actor may also have a set of Interfaces, each describing how other elements
may communicate with the Actor.

An Actor may inherit other Actors. This means that the inheriting Actor will be able to play the
same roles as the inherited Actor, i.e. communicate with the same set of UseCases, as the inherited
Actor.

UseCase

The use case construct is used to define the behavior of a system or other semantic entity without
revealing the entity’s internal structure. Each use case specifies a sequence of actions, including
variants, that the entity can perform, interacting with actors of the entity.

In the metamodel UseCase is a subclass of Classifier, containing a set of Operations and
Attributes specifying the sequences of actions performed by an instance of the UseCase. The
actions include changes of the state and communications with the environment of the UseCase.

There may be Associations between UseCases and the Actors of the UseCases. Such an
Association states that instances of the UseCase and a user playing one of the roles of the Actor
communicate with each other. UseCases may be related to other UseCases only by Extends and
Uses relationships, i.e. Generalizations stereotyped «extends» or «uses». An Extends relationship

UML v 1.1, Semantics 91

denotes the extension of the sequence of one UseCase with the sequence of another one, while
Uses relationships denote that UseCases share common behavior.

The realization of a UseCase may be specified by a set of Collaborations, i.e. the Collaborations
define how Instances in the system interact to perform the sequence of the UseCase.

Attributes

extensionPoint A list of strings representing extension points defined within the use case. An extension
point is a location at which the use case can be extended with additional behavior.

UseCaseInstance

A use case instance is the performance of a sequence of actions being specified in a use case.

In the metamodel UseCaseInstance is a subclass of Instance. Each method performed by a
UseCaseInstance is performed as an atomic transaction, i.e. it is not interrupted by any other
UseCaseInstance.

An explicitly described UseCaseInstance is called a scenario.

10.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the Use Cases package.

Actor

[1] Actors can only have Associations to UseCases and Classes and these Associations are binary.

 self.associations->forAll(a |
 a.connection->size = 2 and
 a.allConnections->exists(r | r.type.oclIsKindOf(Actor)) and
 a.allConnections->exists(r |
 r.type.oclIsKindOf(UseCase) or
 r.type.oclIsKindOf(Class)))

[2] Actors cannot contain any Classifiers.

 self.contents->isEmpty

[3] For each Operation in an offered Interface the Actor must have a matching Operation.

self.specification.allOperations->forAll (interOp |
self.allOperations->exists (op | op.hasSameSignature (interOp)))

UseCase

[1] UseCases can only have binary Associations.

 self.associations->forAll(a | a.connection->size = 2)

[2] UseCases can not have Associations to UseCases specifying the same entity.

 self.associations->forAll(a |
 a.allConnections->forAll(s, o|
 s.type.specificationPath->isEmpty and o.type.specificationPath->isEmpty
 or
 (not s.type.specificationPath->includesAll(o.type.specificationPath) and
 not o.type.specificationPath->includesAll(s.type.specificationPath))

92 UML v 1.1, Semantics

))

[3] A UseCase can only have «uses» or «extends» Generalizations.

self.generalization->forAll(g |
g.stereotype.name = ’Uses’ or g.stereotype.name = ’Extends’)

[4] A UseCase cannot contain any Classifiers.

 self.contents->isEmpty

[5] For each Operation in an offered Interface the UseCase must have a matching Operation.

 self.specification.allOperations->forAll (interOp |
 self.allOperations->exists (op | op.hasSameSignature (interOp)))

 8.3.2.1 Additional operations

[1] The operation specificationPath results in a set containing all surrounding Namespaces that are not instances of
Package.

specificationPath : Set(Namespace)
specificationPath = self.allSurroundingNamespaces->select(n |

n.oclIsKindOf(Subsystem) or n.oclIsKindOf(Class))

UseCaseInstance

No extra well-formedness rules.

10.4 SEMANTICS

This section provides a description of the semantics of the elements in the Use Cases package, and
its relationship to other elements in the Behavioral Elements package.

Actor
Association

2..*

*

AssociationEnd

2..*

*

Interface

*

* Generalization

1 1

1Actor

1*

*

*1
*1

Namespace

1

*

1

*

Actors model parties outside an entity such as a system, a subsystem, or a class, which interact with
the entity. Each actor defines a coherent set of roles users of the entity can play when interacting
with the entity. Every time a specific user interacts with the entity, it is playing one such role. An
instance of an actor is a specific user interacting with the entity. Any instance that conforms to an
actor can act as an instance of the actor. If the entity is a system the actors represent both human
users and other systems. Some of the actors of a lower level subsystem or a class may coincide
with actors of the system, while others appear inside the system. The roles defined by the latter
kind of actors are played by instances of classifiers in other packages or subsystems, where in the
latter case the classifier may belong to either the specification part or the contents part of the
subsystem.

Since an actor is outside the entity, its internal structure is not defined but only its external view as

UML v 1.1, Semantics 93

seen from the entity. Actor instances communicate with the entity by sending and receiving
message instances to and from use case instances and, at realization level, to and from objects. This
is expressed by associations between the actor and the use case or class.

Furthermore, interfaces can be connected to an actor, defining how other elements may interact
with the actor.

Two or more actors may have commonalities, i.e., communicate with the same set of use cases in
the same way. This commonality is expressed with generalizations to another (possibly abstract)
actor, which models the common role(s). An instance of an heir can always be used where an
instance of the ancestor is expected.

UseCase

{<<Uses>> or <<Extends>>}

Association

2..*

Namespace

*

*

Attribute

*

Operation

*
AssociationEnd

2..*

*

Interface

*

*

GeneralizationUseCase

1

*

*

*

*

*

*

*

*
UseCaseInstance

*

1

In the following text the term entity is used when referring to a system, a subsystem, or a class and
the term model element or element denotes a subsystem or a class.

The purpose of a use case is to define a piece of behavior of an entity without revealing the internal
structure of the entity. The entity specified in this way may be a system or any model element that
contains behavior, like a subsystem or a class, in a model of a system. Each use case specifies a
service the entity provides to its users, i.e. a specific way of using the entity. It specifies a complete
sequence initiated by a user; i.e. the interactions between the users and the entity as well as the
responses performed by the entity, as they are perceived from the outside, are specified. A use case
also includes possible variants of this sequence, e.g. alternative sequences, exceptional behavior,
error handling etc. The complete set of use cases specifies all different ways to use the entity, i.e.
all behavior of the entity is expressed by its use cases. These use cases can be grouped into
packages for convenience.

From a pragmatic point of view, use cases can be used both for specification of the (external)
requirements on an entity and for specification of the functionality offered by an (already realized)
entity. Moreover, the use cases also indirectly state the requirements the specified entity poses on
its users, i.e. how they should interact so the entity will be able to perform its services.

Since users of use cases always are external to the specified entity, they are represented by actors
of the entity. Thus, if the specified entity is a system or a subsystem at the topmost level, i.e. a top-
package, the users of its use cases are modeled by the actors of the system. Those actors of a lower
level subsystem or a class that are internal to the system are often not explicitly defined. Instead,
the use cases relate directly to model elements conforming to these implicit actors, i.e. whose
instances play these roles in interaction with the use cases. These model elements are contained in
other packages or subsystems, where in the subsystem case they may be contained in the

94 UML v 1.1, Semantics

specification part or the contents part. The distinction between actor and conforming element like
this is often neglected; thus they are both referred to by the term actor.

There may be associations between use cases and actors, meaning that the instances of the use case
and the actor communicates with each other. One actor may communicate with several use cases of
an entity, i.e. the actor may request several services of the entity, and one use case communicates
with one or several actors when providing its service. Note that two use cases specifying the same
entity cannot communicate with each other since each of them individually describes a complete
usage of the entity. Moreover, use cases always use signals when communicating with actors
outside the system, while it may use other communication semantics when communicating with
elements inside the system.

The interaction between actors and use cases can be defined with interfaces. The interface then
defines a subset of the entire interaction defined in the use case. Different interfaces offered by the
same use case need not be disjoint.

A use-case instance is a performance of a use case, initiated by a message from an instance of an
actor. As a response to the message the use-case instance performs a sequence of actions as
specified by the use case, like sending messages to actor instances, not necessarily only the
initiating one. The actor instances may send new messages to the use-case instance and the
interaction continues until the instance has responded to all input and does not expect any more
input, when it ends. Each method performed by a use-case instance is performed as an atomic
transaction, i.e. it is not interrupted by any other use-case instance.

A use case can be described in plain text, using operations, in activity diagrams, by a state-
machine, or by other behavior description techniques, such as pre-and post conditions. The
interaction between the use case and the actors can also be presented in collaboration diagrams.

In the case where subsystems are used to model the package hierarchy, the system can be specified
with use cases at all levels, since use cases can be used to specify each subsystem and each class. A
use case specifying one model element is then refined into a set of smaller use cases, each
specifying a service of a model element contained in the first one. The use case of the whole is said
to be superordinate to its refining use cases, which in turn are subordinate to the first one. The
functionality specified by each superordinate use case is completely traceable to its subordinate use
cases. Note, though, that the structure of the container element is not revealed by the use cases,
since they only specify the functionality offered by the element. All subordinate use cases of a
specific superordinate use case cooperate to perform the superordinate one. Their cooperation is
specified by collaborations and may be presented in collaboration diagrams. All actors of a
superordinate use case appear as actors of subordinate use cases. Moreover, the cooperating
subordinate use cases are actors of each other. Furthermore, the interfaces of a superordinate use
case are traceable to the interfaces of those subordinate use cases that communicate with actors that
are also actors of the superordinate use case.

The environment of subordinate use cases is the model element containing the model elements
specified by these use cases. Thus, from a bottom-up perspective, interaction of subordinate use
cases results in a superordinate use case, i.e. a use case of the container element.

Use cases of classes are specified in terms of the operations of the classes, since a service of a class
in essence is the invocation of the operations of the class. Some use cases may consist of the
application of only one operation, while others may involve a set of operations, possibly in a well-
defined sequence. One operation may be needed in several of the services of the class, and will
therefore appear in several use cases of the class.

UML v 1.1, Semantics 95

The realization of a use case depends on the kind of model element it specifies. For example, since
the use cases of a class are specified by means of operations, they are realized by the corresponding
methods, while the use cases of a subsystem are realized by the elements contained in the
subsystem. Since a subsystem does not have any behavior of its own, all services offered by a
subsystem must be a composition of services offered by elements contained in the subsystem, i.e.
eventually by classes. These elements will collaborate and jointly perform the behavior of the
specified use case. One or a set of collaborations describes how the realization of a use case is
made. Hence, collaborations are used for specification of both the refinement and the realization of
a use case.

The usage of use cases at all levels imply not only a uniform way of specification of functionality
at all levels, but also a powerful technique for tracing requirements at the system package level
down to operations of the classes. The propagation of the effect of modifying a single operation at
the class level all the way up to the behavior of the system package is managed in the same way.

Commonalities between use cases are expressed with uses relationships (i.e., generalizations with
the stereotype «uses»). The relationship means that the sequence of behavior described in a used
use case is included in the sequence of another use case. The latter use case may introduce new
pieces of behavior anywhere in the sequence as long as it does not change the ordering of the
original sequence. Moreover, if a use case has several uses relationships, its sequence will be the
result of interleaving the used sequences together with new pieces of behavior. How these parts are
combined to form the new sequence is defined in the using use case.

An extends relationship, i.e. a generalization with the stereotype «extends», defines that a use case
may be extended with some additional behavior defined in another use case. The extends
relationship includes both a condition for the extension and a reference to an extension point in the
related use case, i.e. a position in the use case where additions may be made. Once an instance of a
use case reaches an extension point to which an extends relationship is referring, the condition of
the relationship is evaluated. If the condition is fulfilled, the sequence obeyed by the use-case
instance is extended to include the sequence of the extending use case. Different parts of the
extending use case sequence may be inserted at different extension points in the original sequence.
If there is still only one condition (i.e., if the condition of the extends relationship is fulfilled at the
first extension point), then the entire extending behavior is inserted in the original sequence.

Note that the two kinds of relationships described above can only exist between use cases
specifying the same entity. The reason for this is that the use cases of one entity specify the
behavior of that entity alone, i.e., all use-case instances are performed entirely within that entity. If
a use case would have a uses or extends relationship to a use case of another entity, the resulting
use-case instances would involve both entities, resulting in a contradiction. However, uses and
extends relationships can be defined from use cases specifying one entity to use cases of another
one if the first entity has a generalization to the second one, since the contents of both entities are
available in the first entity.

As a first step when developing a system, the dynamic requirements of the system as a whole can
be expressed with use cases. The entity being specified is then the whole system, and the result is a
separate model called a use-case model (i.e., a model with the stereotype «useCaseModel»). Next,
the realization of the requirements is expressed with a model containing a system package,
probably a package hierarchy, and at the bottom a set of classes. If the system package, i.e. the
representation of the system as a whole in the model, is modeled by applying the
«topLevelPackage» stereotype to the subsystem construct, its abstract behavior is naturally the
same as that of the system. Thus, if use cases are used for the specification part of the system
package, these use cases are equivalent to those in the use-case model of the system, i.e. they

96 UML v 1.1, Semantics

express the same behavior but possibly slightly differently structured. In other words, all services
specified by the use cases of a system package, and only those, define the services offered by the
system. Furthermore, if several models are used for modeling the realization of a system, e.g. an
analysis model and a design model, the set of use cases of all system packages and the use cases of
the use-case model must be equivalent.

10.5 STANDARD ELEMENTS

See the Standard Elements appendix for definitions of the «extends», «extends» and
«useCaseModel» stereotypes.

10.6 NOTES
A pragmatic rule of use when defining use cases is that each use case should yield some kind of
observable result of value to (at least) one of its actors. This ensures that the use cases are
complete specifications and not just fragments.

UML v 1.1, Semantics 97

11.BEHAVIORAL ELEMENTS PACKAGE: STATE MACHINES

11.1 OVERVIEW

The State Machine package is a subpackage of the Behavioral Elements package. It specifies a set
of concepts that can be used for modeling behavior through finite state-transition systems. It is
defined as an elaboration of the Foundation package. The State Machine package also depends on
concepts that are defined in the Common Behavior package, enabling integration with the other
subpackages in Behavioral Elements.

The metamodel described supports an object variant of statecharts. Statecharts are characterized by
a number of conceptual shortcuts, such as hierarchical states, concurrent states, history, and branch
nodes, which, in combination, achieve a significant compaction of specifications over most other
state-based formalisms. In a sense, all other finite-state machine models can be considered as
constrained versions of statecharts (e.g., Mealy machines or state-event matrices).

State machines can be used in two different ways. In one case, the state machine may specify
complete behavior of its context, typically a class. In that case requestors send requests to the
owner of a state machine. and the state machine receiving an event determines what the effect will
be by attaching actions to transitions, from which complete specifications of operations can be
derived.

In the second case, the state machine may be used as a protocol specification, showing the order in
which operations may be invoked on a type. Transitions are triggered by call events and their
actions invoke the desired operation. This means that a caller is allowed to invoke the operation at
that point. The protocol state machine does not specify actions that specify the behavior of the
operation itself, but shows a change of state determining which operations can be invoked next.

In addition to defining state machines, the metamodel also defines the core semantics of activity
models. Statecharts and activity models share many elements, and hence are based on the same
metamodel. Activity models are a subtype of state models that use most of the concepts that apply
to state machines.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
State Machines package.

11.2 ABSTRACT SYNTAX
The abstract syntax for the State Machines package is expressed in graphic notation in Figure 15.

98 UML v 1.1, Semantics

Pseudostate
kind : PseuostateKind

SimpleState

ModelElement

(from Core)

action

*
{ordered}

Action

0..1
0..1

entry 0..1

0..1

exit

0..1
0..*

deferredEvent

0..*

behavior

*

context

0..1

ModelElement

(from Core)

top
1

0..1

substate

1..*

parent

0..1

CompositeState
isConcurent : Boolean

1

guard 0..1

Guard
expression : BooleanExpression

effect0..1

ActionSequence
*

0..1

0..1

internalTransition

*

0..1

State

0..1

0..1

0..1 0..1

trigger

0..1

Event

0..*

0..*

*

transitions *

0..1

StateMachine
*

0..1

1

0..1

source

1

outgoing

*
target

1

StateVertex

1..*

0..1

incoming

*

Transition

1

0..1

0..1

0..1*

0..1

0..1

*

*

0..1

1 *

1 *

*

SubmachineState

submachine 1

StateMachine

*

1

Figure 17: State MachinesMain

Signal
(from Common Behavior)

TimeEvent
duration : TimeExpression

ChangeEvent
changeExpression : BooleanExpression

Event

1

Operation
(from Core)

occurrence *

CallEvent

1

*occurrence *

SignalEvent

1

*

1

Figure 18: State MachinesEvents

The following metaclasses are contained in the State Machines package:

UML v 1.1, Semantics 99

CallEvent
A call event is the reception of a request to invoke an operation. The expected result is the
execution of the operation.

In the metamodel CallEvent is a subclass of Event, which is the abstract meta-class representing
all event types that trigger a transition in the state machine.

 Two special cases of CallEvent are the object creation event and the object destruction event.

Associations

operation Designates the operation whose invocation is requested.

ChangeEvent

 A change event is an event that is generated when one or more attributes or relationships change
value according to an explicit expression.

 A change event is never raised by an explicit change event action. Instead, it is a consequence of
the execution of one or more actions that modify the values of elements that are referenced in the
boolean expression. The corresponding change event is actually raised by the underlying run-time
system that detects that the condition has changed to true

 A change event functions as a trigger for transitions, and must not be confused with a guard. When
a change event occurs, a guard can still block any transition that would otherwise be triggered by
that change.

In the metamodel ChangeEvent is a subclass of Event, which is the abstract class that represents
all events that trigger a StateMachine.

 Attributes

changeExpression A boolean expression that indicates when a ChangeEvent occurs.

CompositeState

 A composite state is a state that consists of substates.

 In the metamodel a CompositeState is a subclass of State that contains one or more substates that
are subtypes of StateVertex.

 Associations

substates Designates a set of States that constitute the substates of a CompositeState. Each substate
is uniquely owned by its parent CompositeState.

 Attributes

isConcurrent A boolean value that specifies the decomposition semantics. If this attribute is true, then
the composite state is decomposed directly into two or more orthogonal conjunctive
components (usually associated with concurrent execution). If this attribute is false, then

100 UML v 1.1, Semantics

there are no direct orthogonal components in the composite.4 This means that exactly one
of the substates can be active at a given instant (i.e., sequential execution).

isRegion A derived boolean value that indicates whether a CompositeState is a substate of a
concurrent state. If it evaluates to true, then the CompositeState is a substate of a
concurrent state.

Event

 An event is the specification of a significant occurrence that has a location in time and space. An
instance of an event can lead to the activation of a behavioral feature in an object.

 It is important to distinguish between an event, which is a static specification for a dynamically
occurring concept, from an actual instance of an event as a result of program execution. The class
Event represents the type of an event. An instance of an event is not modeled explicitly in the
metamodel.

 In the metamodel an Event is a subclass of ModelElement and is the part of a Transition that
represents its trigger.

Guard

 A guard condition is a boolean expression that may be attached to a transition in order to determine
whether that transition is enabled or not.

 The guard is evaluated when an event occurrence triggers the transition. Only if the guard is true at
the time the event is presented to the state machine will the transition actually take place. Guards
should be pure expressions without side effects. Guard expressions with side effects may lead to
unpredictable results.

 In the metamodel Guard is a ModelElement so it can be substituted in refined state machines.

Attributes

expression A boolean expression that specifies the guard condition.

PseudoState

 A pseudo state is an abstraction of different types of nodes in the state machine graph which
represent transient points in transition paths from one state to another (e.g., branch and fork points).
Pseudo states are used to construct complex transitions from simple transitions. For example, by
combining a transition entering a fork pseudo state with a set of transitions exiting the fork pseudo
state, we get a complex transition that leads to a set of target states.

 In the metamodel PseudoState is a subclass of StateVertex, which generalizes all statechart nodes.

Attributes

4 However, there may be orthogonal components in some of the contained states.

UML v 1.1, Semantics 101

kind Determines the type of the PseudoState and can be one of: initial, deepHistory,
shallowHistory, join, fork, branch, final.

SignalEvent

 A SignalEvent represents events that result from the reception of a signal by an object.

 In the metamodel SignalEvent is a subclass of Event.

 Associations

signal Designates the Signal whose reception by the state owner may trigger a Transition..

SimpleState
 A SimpleState is a state that does not have substates.

 In the metamodel a SimpleState is a subclass of State that does not have any additional features.
It is included solely for symmetry with CompositeState.

State

 A State is a condition or situation during the life of an object during which is satisfies some
condition, performs some activity, or waits for some event. A state models a dynamic situation in
which, typically, one or more (implicit or explicit) conditions hold.

 In the metamodel, a State is a subclass of StateVertex, thereby inheriting the fundamental features
of incoming and outgoing transitions associated with state vertices.

Associations

deferredEvent A list of Events the effect of whose occurrence during the State is postponed until the
owner enters a State in which they are not deferred, at which time they may trigger
Transitions as if they had just occurred.

entry An optional ActionSequence that is executed when the State is entered. These Actions
are atomic, may not be avoided, and precede any internal activity or Transitions.

exit An optional ActionSequence that is executed when the State is exited. These Actions are
atomic, may not be avoided, and follow any internal activity or Transitions.

internalTransition A set of Transitions that occur entirely within the State. If one of their triggers
is satisfied then the action is performed without changing State. This means that the entry
or exit condition of the State will not be invoked. These Transitions apply even if the
StateMachine is in a nested region and they leave it in the same State.

deferredEvent An association that specifies the Events to be deferred if received within the State.
Multiplicity ‘*..*’ indicates that a State can defer multiple Events, and an Event can be
deferred by multiple States.

StateMachine

 A state machine is a behavior that specifies the sequences of states that an object or an interaction

102 UML v 1.1, Semantics

goes through during its life in response to events, together with its responses and actions. The
behavior is specified as a traversal of a graph of state nodes interconnected by one or more joined
transition arcs. The transitions are triggered by series of event instances.

 In the metamodel a StateMachine is composed of States and Transitions. The ModelElement role
provides the context for the StateMachine. A common case of the context relation is where a
StateMachine is designated to specify the lifecycle of the Classifier. The StateMachine has a
composition aggregation to a State that represents the top state and a set of Transitions. As a
consequence the StateMachine owns its Transitions and its top State, but nested states are
transitively owned through their parent States.

 Associations

context An association to a ModelElement constrained to be a Classifier or a
BehavioralFeature. The owning ModelElement is the element whose behavior is
specified by the StateMachine. The ModelElement may contain multiple StateMachines
(although for many purposes one suffices). Each StateMachine is owned by one
ModelElement.

top Designates the top level State directly owned by the StateMachine. Other States are
owned by the parent composite states. The multiplicity is 1, there must be one State
designated as the top State. The rest of the StateMachine is an expansion of this
CompositeState.

transitions Associates the StateMachine with its Transitions. Note that internal Transitions are
owned by the State and not by the StateMachine. All other Transitions which are
essentially relationships between States are owned by the StateMachine. Multiplicity is
‘0..*’.

StateVertex

 A StateVertex is an abstraction of a node in a statechart graph. In general, it can be the source or
destination of any number of transitions.

 In the metamodel a StateVertex is a subclass of ModelElement.

 Associations

outgoing Specifies the transitions departing from the vertex.

incoming Specifies the transitions entering the vertex.

SubmachineState

 A SubmachineState represents a nested state machine. A nested state machine is semantically
equivalent to a composite state, but facilitates reuse and modularity in the form of an independent
nested state machine.

 In the metamodel a SubmachineState is a subclass of State.

 Associations

UML v 1.1, Semantics 103

submachine Represents the substate machine

TimeEvent
 A TimeEvent is a subtype of Event for modeling event instances resulting from the expiration of a
deadline.

 In the metamodel a time event can specify a trigger of a transition, which by default denotes the
time elapsed since the current state was entered.

 Attributes

duration Specifies the corresponding time deadline.

Transition

 A Transition is a relationship between a source state vertex and a target state vertex. It may be part
of a compound transition, which takes the state machine from one state configuration to another,
representing the complete response of the state machine to a particular event instance for a given
source state configuration.

 In the metamodel Transition is a subclass of ModelElement that participates in various
relationships with other state machine metaclasses:

 Associations

trigger Specifies the single Event which activates it

guard Predicate that must evaluate to true at the instant the Transition is triggered.

effect Specifies an ActionSequence to be performed when the Transition fires.

source Designates the StateVertex affected by firing the Transition. If the StateVertex is in the
source state and the trigger of the Transition is satisfied, then it fires, performs its
Actions, and the StateMachine enters the target State.

target Designates the StateVertex that results from a firing of the Transition when the
StateMachine was originally in the source State. After the firing the StateMachine is in
the target State.

11.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the State Machines package.

CompositeState

[1] A composite state can have at most one initial vertex

 self.subState->select (v | v.oclType = Pseudostate)->
 select(p : Pseudostate | p.kind = #initial)->size <= 1

[2] A composite state can have at most one deep history vertex

104 UML v 1.1, Semantics

 self.subState->select (v | v.oclType = Pseudostate)->
 select(p : Pseudostate | p.kind = #deepHistory)->size <= 1

[3] A composite state can have at most one shallow history vertex

 self.subState->select(v | v.oclType = Pseudostate)->
 select(p : Pseudostate | p.kind = #shallowHistory)->size <= 1

[4] There have to be at least two composite substates in a concurrent composite state

 (self.isConcurrent) implies
 (self.subState->select (v | v.oclIsKindOf(CompositeState))->size <= 2)

 Guard

[1] A guard should not have side effects

 LocalInvocation

[1] A local invocation has no target

 self.target->size = 0

 PseudoState

[1] An initial vertex can have at most one outgoing transition and no incoming transitions

 (self.kind = #initial) implies
 ((self.outgoing->size <= 1) and (self.incoming->isEmpty))

[2] A final pseudo state cannot have outgoing transitions

 (self.kind = #final) implies (self.outgoing->isEmpty)

[3] History vertices can have at most one outgoing transition

 ((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies
 (self.outgoing->size <= 1)

[4] A join vertex must have at least two incoming transitions and exactly one outgoing transition

 (self.kind = #join) implies
 ((self.outgoing->size = 1) and (self.incoming->size >= 2))

[5] A fork vertex must have at least two outgoing transitions and exactly one incoming transition

 (self.kind = #fork) implies
 ((self.incoming->size = 1) and (self.outgoing->size >= 2))

[6] A branch vertex must have one incoming transition segment and at least two outgoing transition segments with
guards.

 (self.kind = #branch) implies
 ((self.incoming->size = 1) and
 ((self.outgoing->size >= 2) and self.outgoing->forAll(t |
 t.guard->size = 1)))

StateMachine

[1] A StateMachine is aggregated within either a classifier or a behavioral feature.

 self.context.oclIsKindOf(BehavioralFeature) or self.context.oclIsKindOf(Classifier)

UML v 1.1, Semantics 105

[2] A top state is always a composite

 self.top.oclIsTypeOf(CompositeState)

[3] A top state cannot have parents

 self.top.parent->isEmpty

[4] The top state cannot be the source or target of a transition

 (self.top.outgoing->isEmpty) and (self.top.incoming->isEmpty)

[5] There can be no history vertices in the top state

 self.top.substate->select(oclIsTypeOf(Pseudostate))->
forAll (p : Pseudostate |

 not (p.kind = #shallowHistory) and not (p.kind = #deepHistory))

[6] If a StateMachine describes a behavioral feature, it contains no triggers of type CallEvent, apart from the trigger
on the initial transition (see OCL for Transition [8]).

 self.context.oclIsKindOf(BehavioralFeature) implies
 self.transitions->reject(
 source.oclIsKindOf(Pseudostate) and
 source.oclAsType(Pseudostate).kind= #initial).trigger->isEmpty

 Transition

[1] A fork segment should not have guards or triggers

 self.source.oclIsKindOf(Pseudostate) implies
 ((self.source.oclAsType(Pseudostate).kind = #fork) implies
 ((self.guard->isEmpty) and (self.trigger->isEmpty)))

[2] A join segment should not have guards or triggers

 self.target.oclIsKindOf(Pseudostate) implies
 ((self.target.oclAsType(Pseudostate).kind = #join) implies
 ((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment should always target a state

 self.source.oclIsKindOf(Pseudostate) implies
 ((self.source.oclAsType(Pseudostate).kind = #fork) implies
 (self.target.oclIsKindOf(State)))

[4] A join segment should always originate from a state

 self.target.oclIsKindOf(Pseudostate) implies
 ((self.target.oclAsType(Pseudostate).kind = #join) implies
 (self.source.oclIsKindOf(State)))

[5] A branch segment must not have a trigger

 self.source.oclIsKindOf(Pseudostate) implies
 (((self.source.oclAsType(Pseudostate).kind = #branch) or
 (self.source.oclAsType(Pseudostate).kind = #deepHistory) or
 (self.source.oclAsType(Pseudostate).kind = #shallowHistory) or
 (self.source.oclAsType(Pseudostate).kind = #initial)) implies
 (self.trigger->isEmpty))

[6] Join segments should originate from orthogonal states

106 UML v 1.1, Semantics

 self.target.oclIsKindOf(Pseudostate) implies
 ((self.target.oclAsType(Pseudostate).kind = #join) implies
 (self.source.parent.isConcurrent))

[7] Fork segments should target orthogonal states

 self.source.oclIsKindOf(Pseudostate) implies
 ((self.source.oclAsType(Pseudostate).kind = #fork) implies
 (self.target.parent.isComposite))

[8] An initial transition at the topmost level may have a trigger with the stereotype “create”. An initial transition of
a StateMachine modeling a behavioral feature has a CallEvent trigger associated with that BehavioralFeature.
Apart from these cases, an initial transition never has a trigger.

self.source.oclIsKindOf(Pseudostate) implies
((self.source.oclAsType(Pseudostate).kind = #initial) implies

(self.trigger->isEmpty or
((self.source.parent = self.stateMachine.top) and

(self.trigger.stereotype.name = ’create’)) or
(self.stateMachine.context.oclIsKindOf(BehavioralFeature) and

self.trigger.oclIsKindOf(CallEvent) and
(self.trigger.oclAsType(CallEvent).operation =

self.stateMachine.context))
))

self.source.oclIsKindOf(Pseudostate) implies
((self.source.kind = #initial) implies

(self.trigger.isEmpty or
((self.source.parent = self.StateMachine.top) and

(self.trigger.stereotype.name = ’create’)) or
(self.StateMachine.context.oclIsKindOf(BehaviouralFeature) and

self.trigger.oclIsKindOf(CallEvent) and
(self.trigger.operation = self.StateMachine.context))

))

11.4 SEMANTICS

This section describes the execution semantics of state machines. For convenience, the semantics
are described using an operational style; that is, they are expressed in terms of the operations of a
hypothetical machine that implements a state machine specification. In the general case, the key
components of this abstract machine are:

• an events queue which accepts incoming event instances,

• a dispatcher which selects and de-queues event instances for processing, and

• an event processor which processes dispatched event instances according to the general
semantics of UML state machines and the specific form of the state machine in question.
Because of that, this component is simply referred to as “the state machine” in the following
text.

 This is for reference purposes only and is not meant to imply that individual realizations must
conform to this structure. For example, the role of the event dispatcher might be played by some
other object that simply invokes an operation on the object.

 Understanding the dynamic semantics of state machines requires an understanding of the complex
relationships between individual metaclasses. Therefore, the bulk of the description of the dynamic
semantics of state machine is included in the context of the state machine metaclass.

UML v 1.1, Semantics 107

 StateMachine

 The software context that we assumes that a state machine reacts to an event applied to it by some
external object.

 Event processing by a state machine is partitioned into steps, each of which is caused by an event
instance directed to the state machine.

 The fundamental semantics assumes that events are processed in sequence, where each event
stimulates a run-to-completion (RTC) step. The next external event is dispatched to the state
machine after the previous RTC step has completed. This assumption simplifies the transition
function of the state machine since the incoming event is processed only after the state machine has
reached a well-defined (stable) state configuration.

 The practical meaning of these semantics is thread protection, allowing the state machine to safely
complete its RTC step without concern about being interrupted in mid-transition by a subsequent
event. This may be implemented by a thread event-loop reading events from a queue (in case of
active classes) or as a monitor (in case of a passive class).

 It is possible to define state machine semantics by allowing the RTC steps to be applied
concurrently to the orthogonal regions of a composite state, rather than to the whole state machine.
This would allow the event serialization constraint to be relaxed. However, such semantics are
quite subtle and difficult to implement. Therefore, the dynamic semantics as defined in this
document are based on the precept that an RTC step applies to the entire state machine. This
satisfies most practical purposes.

 Run-to-completion processing

 Once an event instance is dispatched, it may result in one or multiple transitions being enabled for
firing. (Only transitions that triggered by the corresponding event type can be enabled.) . By
default, if no transition is enabled, the event is discarded without any effect. An event can be
deferred to be processed later if specified as a deferred event in one of the active states. Deferred
events semantics are described in a following section.

 In case where one or more transitions are enabled, the state machine selects a subset and fires
them, moving the state machine from one active state configuration to a new active state
configuration. This basic transformation is called a step. The transitions that fire are determined by
the transition selection function described below. Actions that result from taking the transition may
cause event instances to be generated for this and other objects.

 If these actions are synchronous then the transition freezes until the invoked objects complete their
own run. Each orthogonal bottom-level component can fire at most one transition as a result of the
event instance dispatch. Conflicting transitions (described below) will not fire in the same step.
When all orthogonal regions have finished executing the transition, the event instance is consumed,
and the step terminates.

 The order in which selected transitions fire is not defined. It is based on an arbitrary traversal that is
not explicitly defined by the state machine formalism.

Completion transitions and completion events

 A completion transition is a transition without a trigger (a guard is possible). The completion
transition is typically taken upon the completion of actions of its source state.

108 UML v 1.1, Semantics

 After reacting to an event occurrence, the state machine may reach a state configuration where
some of the states have outgoing completion transitions (transient configurations). Such a
configuration is considered non-stable.

 In this case further steps are taken until the state machine reaches a stable state configuration (i.e.,
no more transitions are enabled). Completion transitions are triggered by completion events, which
are dispatched to the state machine whenever a transient configuration is encountered. Completion
events are dispatched in a series of steps until a stable configuration is reached completing the RTC
step initiated by the event instance. At this point, control returns to the dispatcher and a new event
instance can be dispatched.

 It is possible for a state machine to never reach a stable configuration. (A practical solution to
overcome such cases in an implementation of this semantics, is to set a limit on the maximal
number of steps allowed before the state machine is to reach a stable configuration.)

 An event instance can arrive at a state machine that is frozen in the middle of an RTC step from
some other object within the same thread, in a circular fashion. This event instance can be treated
by orthogonal components of the state machine that are not frozen along transitions at that time.

 Step semantics

 Informally, the semantics of a step involve the execution of a maximal set of non-conflicting
transitions from an active, current state configuration. (Note that this section is based on the
dynamic semantics sections of State, CompositeState, and Transition.)

 Transition selection

 Transition selection specifies which subset of the enabled transitions will fire. The following
sections discuss the two major considerations that affect transition selection: conflicts and
priorities.

Conflicts

 In a given state, it is possible for several transitions to be enabled within a state machine. The issue
then is which ones can be fired simultaneously without contradicting (conflicting with) each other.
For example, if there are two transitions originating from a state s, one labeled e[c1] and the other
e[c2], and if both [c1] and [c2] are true, then only one transition can fire.

 Two transitions are said to conflict if they both exit the same state, or, more precisely, that the
intersection of the set of states they exit is non-empty. The intuition is that only ‘concurrent’
transitions may be fired simultaneously. This constraint guarantees that the new active state
configuration resulting from executing the set of transitions is well formed.

 An internal transition in a state conflicts only with transitions that cause an exit from that state.

Priorities

 Priorities resolve transition conflicts, but not all of them. We use the state hierarchy to define
priorities among conflicting transitions. By definition, a transition emanating from a substate has
higher priority than a conflicting transition emanating from any of the containing states.

 The priority of a transition is defined based on its source state. Join transitions get the priority

UML v 1.1, Semantics 109

according to their lowest source state.

 If t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not hierarchically related, then there is no priority defined between t1 and t2.

 (Note that other policies are also possible. In classical statecharts, the priority is reversed: parent
states imply higher priorities than nested states. However, in the object context inner states are
more specialized than their ancestors, and therefore override them.)

 Selecting transitions

 The set of transitions that will fire is the maximal set that satisfies the following conditions:

• All transitions in the set are enabled.

• There are no conflicts within the set.

• There is no transition outside the set that has higher priority than a transition in the set.
Intuitively, the ones with higher priorities are in the set and the ones with lower priorities are
left out.

 This definition is not written algorithmically, but can be easily implemented by a greedy selection
algorithm, with a straightforward traversal of the active state configuration. Active states are
traversed bottom up, where transitions originating from each state are evaluated. This traversal
guarantees that the priority principle is not violated. The only non-trivial issue is resolving
transition conflicts across orthogonal states on all levels. This is resolved by "locking" each
orthogonal state once a transition inside any one of its components is fired. The bottom-up
traversal and the orthogonal state locking together guarantee a proper selection set.

Deferred events

Each of the states in the active states configuration may specify a set of deferred events. In case
where no transition is enabled following an event dispatch, if the event is specified to be deferred
by any of the active configuration states, it is considered pending.

An event instance is pending as long as its event is deferred by the active configuration.
Following an RTC step where the state machine reaches a configuration in which the event is not
deferred, the event instance is ready to be dispatched again.

Note the it is the responsibility of the dispatching mechanism to serialize the events to be
dispatched in a sequence, since the step semantics is assumes a single event dispatch. Therefore if
following an RTC-step more than a single pending event becomes ready (or an external event has
occurred) it is guaranteed that there is no conflict.

110 UML v 1.1, Semantics

 State

 During execution a state can be active or inactive. A state becomes active when it is entered as a
result of some transition, and becomes inactive if it is exited as a result of a transition.

 A state can be exited and entered as a result of the same transition (e.g., self transition).

 Whenever a state is entered, it executes its entry action sequence. Whenever a state is exited, it
executes its exit action sequence.

 CompositeState

 Legal state configuration

 Every active composite state during execution must follow the legal active state configuration with
respect to its substates. This means that the following constraints are always met during execution
(except for transition execution period which is transient):

• If the composite state is not a concurrent state, exactly one of its substates is active.

• If the composite state is concurrent, all of its substates (regions) are active.

To avoid violation of the legal configuration constraints during execution, the dynamic semantics
upon entering and exiting composite states is defined such that a well-formed state machine always
satisfies them.

Entering a composite state

 Entering a non-concurrent composite state

Upon entering a composite state the entry action sequence executes similar to simple state.

• default entry: If the transition hits the edge of the composite state, then the default (initial5)
transition executes to enter one of the substates of the composite state. Note that initial
transitions must always be enabled (in case of branches). A disabled initial transition is an ill-
defined execution state and its handling is an implementation issue.

• explicit entry: If the transition “passes through” the state towards one of its substates, then the
explicit substate becomes active, and recursively follows the entering procedure.

• history entry: if the transition is entering a history pseudo state of a composite state, the active
substate is determined as the most recent active substate prior to the entry. If it is the first
time the state is entered, then the active substate is determined by the transition outgoing
from the history pseudo state. If no such transition is specified, the situation is illegal and its
resolution is implementation dependent. The active substate determined by history proceeds
with its default entry.

5 Initial transition is a transition originating from an initial pseudo state.

UML v 1.1, Semantics 111

• deep history entry: similar to history, but the active substate also executes deep history entry
(recursively)

 Entering a concurrent composite state

Whenever a concurrent composite state is entered, each one of its substates (the “regions”) are also
entered, either by default or explicitly. If the transition hits the edge of the composite state, then all
the regions are default entered. If the transition explicitly enters one or more regions (fork), these
regions are entered explicitly and the others by default.

Exiting a composite state

 Exiting non-concurrent state

The active substate(s) is exited (recursively). After exiting the active substate, the exit action is
executed.

 Exiting a concurrent state

Each one of the regions is exited. Following that, the exit actions are executed.

Pseudostate

A Pseudostate represents family of nodes in the state machine that are attached to states and
transitions as compositional elements that carry additional semantics.

A Pseudostate can be one of the following:

• initial represents a default vertex that is the source for a single transition to the “default”
state. There can be at most one initial vertex in a composite state or state machine.

• deepHistory is a vertex that is used to represent, in shorthand form, the most recent active
configuration of a state and its substates. A composite state can have at most one history
vertex. A transition coming into the history vertex is equivalent to a transition coming into
the most recent active configuration of a state and the transitive closure of all its substates. A
transition originating from the history connector leads to the default history state. This
transition is taken in case no history exists and a transition to history is taken.

• shallowHistory is a vertex that is used to represent, in shorthand form, the most recent active
configuration of a state but not its substates. A composite state can have at most one shallow
history vertex. A transition coming into the shallow history vertex is equivalent to a transition
coming into the most recent active substate of a state. (Note that a state can have both
deepHistory and shallowHistory transitions.)

• join vertices combine several transition segments coming from source vertices in different
orthogonal components. The segments entering a join vertex cannot have guards.

• fork vertices connect an incoming transition to two or more orthogonal target vertices. The
segments outgoing from a fork vertex must not have guards.

112 UML v 1.1, Semantics

• branch vertices split a single segment into two or more transition branches labeled by guards.
The guards determine which of the branches are enabled. A predefined guard denoted “else”
may be defined for at most one branch. This branch is enabled if all the guards labeling the
other branches are false.

• final represents a simple state with some additional semantics. Unlike all other pseudo states,
this is not a transient state. When the final state is entered, its parent composite state is
terminated, or that it satisfies the termination condition. In case that the parent of the final
state is the top state, the entire statechart terminates, and this implies the termination of “life”
of the entity that the statechart specifies. If the statechart specifies the behavior of a classifier,
it implies the “termination” of that instance. In case that the parent state of the final state is
not the top state, it simply means that the terminate transitions are enabled.

A terminate transition is a transition is a transition outgoing a non-pseudo state which does
not have a label (event or guard). It is enabled if its source state has reached a final state.

SubmachineState

 A submachine state is an organizational concept and does not introduce additional behavioral
semantics. The submachine state facilitates reuse of state machine segments similar to the way
procedures and templates are used in conventional programming language. A submachine state also
facilitates decomposition of complex state machines into a set of simpler machine.

 The semantics of a submachine state is equivalent to the semantics of replacing the submachine
state with the state machine related by the submachine association, where the top state of the
submachine merges with the submachine state, resulting in a composite state. Therefore, it is
possible that the submachine state has entry or exit actions and/or internal transitions, they are
attached to the resulting CompositeState.

 A submachine state may also be thought of as a state machine “subroutine”, in which one machine
“calls” another machine and then “returns” to the original machine.

 Transitions

 Transitions vs. compound transitions

 In the general case a transition represents a fragment of a compound transition. A compound
transition is a cluster of simple transitions connected by join, fork, and branch transitions. In case
of branch nodes, only one segment is selected for each branch, based on the guard. The dynamic
semantics specify the execution of a compound transition, which is atomic in terms of execution
(join, fork, and branch are pseudostates, not states).

 Note that a compound transition can have at most one trigger, since join, fork and branch segments
cannot have triggers.

 A transition that fires always leads from one legal state configuration to another legal state
configuration. Transitions originating from a composite state, once fired, always cause exiting the
composite state and its constituents.

UML v 1.1, Semantics 113

 High-level (“interrupt”) transitions

 Transitions originating from composite states are sometimes referred to as “high-level” transitions
or “interrupts”. Once selected to fire (as explained below), they result in exiting of all the internal
substates and executing their exit actions. Note however, that since the state machine semantics are
run-to-completion, strictly speaking they are not really interrupts, but rather generalized or “group”
transitions. (The term “interrupt” stems from classical statecharts where so-called “do activities” of
states would be aborted as a result of high-level transitions.)

 Enabled (compound) transitions

 A transition is enabled if both of the following hold:

• All source states of the transition are in the current active state configuration. A completion
transition (without a trigger) requires its source state to be in the termination state, in case it is
a composite state.

• The trigger matches the event instance posted to the state machine. Null triggers match any
event, in particular completion event. A specialized event matches a trigger based on a
generalized event .

• There is a path of transition segments from the source to the target states, along which all the
guards are satisfied (transition without guards are always satisfied). If more than one path is
possible, only one is selected (non-deterministically).

Note that guards are evaluated prior to the invocation of any action related to the transition.

Since guards are not interpreted, their evaluation may include expressions causing side effects.
Guards causing side effects are considered bad practice, since their evaluation strategy, in terms of
when guards are evaluated and in which order, is not defined and is a function of the
implementation.

(Compound) Transition execution

Transition execution semantics are defined such that the resulting state configuration is always a
legal one. This principle is especially important once we deal with transitions entering/exiting
boundaries of concurrent states.

 LCA, main source, and main target

Every compound transition causes the exit of one (composite) state, and proper entering of another
composite state. These two states are designated as the main source and the main target of the
transition.

The Least Common Ancestor (LCA) state of a transition is the lowest state that contains all the
explicit source states and explicit target states of the compound transition. In case of branch
segments, only the states related to the selected path are considered explicit targets (“dead”
branches are not considered).

The main source is a direct substate of the LCA that contains the explicit sources. The main target
is a substate of the LCA that contains the explicit targets.

114 UML v 1.1, Semantics

Examples:

1. The common simple case: A transition t between two simple states s1 and s2, in a composite
state s.

Here LCA(t) is s, the main source is s1 and the main target is s2.

2. A more esoteric case: An unstructured transition from one region to another.

s

S1 S2

Here LCA(t) is the parent of s, the main source is s and the main target is s.

 Transition execution sequence

Once a transition is enabled and is selected to fire, the following steps are carried out in order:

• The main source state is properly exited (as defined in the composite states exiting semantics
above).

• Actions are executed in sequence following their linear order along the segments of the
transition: The "closer" the action to the source state, the earlier it is executed.

• The main target state is properly entered (as defined in the composite state entry semantics
above).

11.5 STANDARD ELEMENTS

The predefined stereotypes, constraints and tagged values for the State Machines package are listed
in Table 5 and defined in the Standard Elements appendix.

Table 5: State MachinesStandard Elements

Model Element Stereotypes Constraints Tagged Values

Event «create»
«destroy»

UML v 1.1, Semantics 115

 11.6 NOTES

Example: Modeling class behavior

In the software that is implemented as a result of a state modeling design, the state machine may or
may not be actually visible in the (generated or hand-crafted) code. The state machine will not be
visible if there is some kind of run-time system that supports state machine behavior. In the more
general case, however, the software code will contain specific statements that implement the state
machine behavior.

A C++ example is shown in Figure 19:

Figure 19: Modeling Class Behavior Example

 In the above example, the class has an abstract state manifested by the balance attribute,
controlling the behavior of the class. This is modeled by the state machine in Figure 20.

 class bankAccount {

 private:

 int balance;

 public:

 void deposit(amount)
{
 if (balance > 0) balance = balance + amount; // no charge

 else

 balance = balance + amount - 1 ; // $1 charge for the transaction
}

 void withdrawal(amount) {

 if (balance>0) balance = balance - amount ;

 }

 }

116 UML v 1.1, Semantics

credit

debit

withdrawal

deposit/balance
+=amount

deposit

[amount>-balance]/

balance+=amount-1

else/balance -= amount

else/balance
+=amount-1

[amount>balance]/
balance -= amount

Figure 20: State Machine for Modeling Class Behavior

 Since state machines describe behaviors of generalizable elements, primarily classes, state machine
refinement is used capture the relationships between the corresponding state machines. The
refinement mechanism itself is part of the Auxiliary Elements package, and define general
refinement relationships between arbitrary model composites.

Example: State machine refinement

 Since state machines describe behaviors of generalizable elements, primarily classes, state machine
refinement is used capture the relationships between the corresponding state machines. The
refinement relationships are facilitated by the refinement metaclass defined in the auxiliary
elements package. State machines use refinement in three different mappings, specified by the
mapping attribute of the refinement meta-class. The mappings are refinement, substitution, and
deletion.

 To illustrate state machine refinement, consider the following example where one state machine
attached to a class denoted ‘Supplier’, is refined by another state machine attached to a class
denoted as ‘Client’.

Sa

Sa2

Sa1

Sa3

Sa (new)

Sa4
Sa1 (new)

Sa3
Sa11

- Sa2 deleted

- Sa4 added

- Sa1 refined
into composite

Supplier (refined) Client (refinee)

Figure 21: State Machine Refinement Example

UML v 1.1, Semantics 117

 In the example above, the client state (Sa(new)) in the subclass substitutes the simple substate
(Sa1) by a composite substate (Sa1(new)). This new composite substate has a component substate
(Sa11). Furthermore, the new version of Sa1 deletes the substate Sa2 and also adds a new substate
Sa4. Substate Sa3 is inherited and is therefore common to both versions of Sa. For clarity, we have
used a gray shading to identify components that have been inherited from the original. (This is for
illustration purposes and is not intended as a notational recommendation.)

 It is important to note that state machine refinement as defined here does not specify or favor any
specific policy of state machine refinement. Instead, it simply provides a flexible mechanism that
allows subtyping, (behavioral compatibility), inheritance (implementation reuse), or general
refinement policies.

 We provide a brief discussion of potentially useful policies that can be implemented with the state
machine refinement mechanism. These policies could be indicated by attaching standard
stereotypes (i.e. «subtype» and «inherits») to the refinement relationship between state machines.

Subtyping

 The refinement policy for subtyping is based on the rationale that the subtype preserves the
pre/post condition relationships of applying events/operations on the type, as specified by the state
machine. The pre/post conditions are realized by the states, and the relationships are realized by the
transitions. Preserving pre/post conditions guarantee the substitutability principle.

 States and transitions are only added, not deleted. Refinement is interpreted as follows:

• A refined State has the same outgoing transitions, but may add others, but a different set of
incoming transitions. It may have a bigger set of substates, and it may change its concurrency
property from false to true.

• A refined Transition may go to a new target state which is a substate of the state specified in
the base class. This comes to guarantee the post condition specified by the base class.

• A refined Guard has the same guard condition, but may add disjunctions. This guarantees that
pre-conditions are weakened rather than strengthened.

• A refined ActionSequence contains the same actions (in the same sequence), but may have
additional actions. The added actions should not hinder the invariant represented by the target
state of the transition.

(Strict) Inheritance

 The rationale behind this policy is to encourage reuse of implementation rather than preserving
behavior. Since most implementation environment utilize strict inheritance (i.e. features can be
replaced or added, but not deleted), the inheritance policy follows this line by disabling refinements
which may lead to non-strict inheritance once the state machine is implemented.

 States and transitions can be added. Refinement is interpreted as follows:

• A refined State has some of the same incoming transitions (i.e. drop some, add some) but a
greater or bigger set of outgoing transitions. It may have more substates, and may change its
concurrency attribute.

118 UML v 1.1, Semantics

• A refined Transition may go to a new target state but should have the same source.

• A refined Guard has may have a different guard condition

• A refined ActionSequence contains some of the same actions (in the same sequence), and
may have additional actions

General Refinement

 In this most general case, states and transitions can be added and deleted (i.e. ‘null’ refinements).
Refinement is interpreted without constraints, i.e. there are no formal requirements on the
properties and relationships of the refined state machine element, and the refining element:

• A refined State may have different outgoing and incoming transitions (i.e. drop all, add some)

• A refined Transition may leave from a different source and go to a new target state

• A refined Guard has may have a different guard condition

• A refined ActionSequence need not contain the same actions (or it may change their
sequence), and may have additional actions

 The refinement of the composite state in the example above is an illustration of general refinement.

 It should be noted that if a type has multiple supertype relationships in the structural model, then
the default state machine for the type consists of all the state machines of its supertypes as
orthogonal state machine regions. This may be explicitly overridden through refinement if
required.

Classical statecharts

 The major difference between classical (Harel) statecharts and object state machines result from the
external context of the state machine. Object state machines primarily come to represent behavior
of a type. Classical statechart specify behaviors of processes. The following list of differences
result from the above rationale:

• Events carry parameters, rather than being primitive signals

• Call events (operation triggers) are supported to model behaviors of types

• Event conjunction is not supported, and the semantics is given in respect to a single event
dispatch, to better match the type context as opposed to a general system context.

• Classical statecharts have an elaborated set of predefined actions, conditions and events
which are not mandated by object state machines, such as entered(s), exited(s),
true(condition), tr!(c) (make true), fs!(c).

• Operations are not broadcast but can be directed to an object-set.

UML v 1.1, Semantics 119

• The notion of activities (processes) does not exist in object state machines. Therefore all
predefined actions and events that deal with activities are not supported, as well as the
relationships between states and activities.

• Transition compositions are constrained for practical reasons. In classical statecharts any
composition of pseudo states, simple transitions, guards and labels is allowed.

• Object state machine support the notion of synchronous communication between state
machines.

• Actions on transitions are executed in their given order.

• Classical statecharts are based on the zero-time assumption, meaning transitions take zero
time to execute. The whole system execution is based on synchronous steps where each step
produces new events that will be processed at the next step. In OO state machines, this
assumptions are relaxed and replaced with these of software execution model, based on
threads of execution and that execution of actions do take time.

120 UML v 1.1, Semantics

 11.7 ACTIVITY MODELS

 11.7.1 Overview

 Activity models define an extended view of the State Machine package. State machines and
activity models are both essentially state transition systems, and share many metamodel elements.
This section describes the concepts in the State Machine package that are specific to activity
models. It should be noted that the activity models extension has few semantics of its ownit
should be understood in the context of the State Machine package, including its dependencies on
the Foundation package and the Common Behavior package.

 An activity model is a special case of a state machine model that is used to model processes
involving one or more classifiers. Most of the states in such a model are action states that represent
atomic actions, i.e., states that invoke actions and then wait for their. Transitions into action states
are triggered by events, which can be 1) the completion of a previous action state; 2) the
availability of an object in a certain state; 3) the occurrence of a signal; or 4) the satisfaction of
some condition. By defining a small set of additional subtypes to the basic state machine concepts,
the well-formedness of activity models can be defined formally, and subsequently mapped to the
dynamic semantics of state machines. In addition, the activity specific subtypes eliminate
ambiguities that might otherwise arise in the interchange of activity models between tools.

 11.7.2 Abstract Syntax

 The abstract syntax for activity models is expressed in graphic notation in Figure 22.

UML v 1.1, Semantics 121

ObjectFlowState

Pseudostate

StateVertex

ActionState

SimpleState

ActivityState

1

ActivityModel partition

0..*

contents*
0..1

Partition

1 0..*

context

0..1

ModelElement
(from Core)

*
0..1

behavior

*
0..1

StateMachine

0..1*

top

1

typeState 1

*

0..*

inState

1

State

0..1

1

type1

Classifier
(from Core)

*

ClassifierInState

1

*

0..*

1

1

*

Figure 22: Activity Models

The following metaclasses are used to define activity models:

 ActivityModel

An activity model is a special case of a state machine that defines a computational process in terms
of the control-flow and object-flow among its constituent actions. It does not extend the semantics
of state machines but it does define shorthand forms that are convenient for modeling
computational processes.

The primary basis for ActivityModels is to describe a state model of an activity or process
involving one or more Classifiers. ActivityModels can be attached to Packages, Classifiers
(including UseCases) and BehavioralFeatures. Most of the States in an activity model are
ActionStates, i.e., states in which an action is being performed, typically the execution operations.
As in any state machine, if an outgoing transition is not explicitly triggered by an event then it is
implicitly triggered by the completion of the contained actions. An ActivityState represents
structured subactivity that has some duration and internally consists of a set of actions. That is, an
ActivityState is a “hierarchical action” with an embedded activity submodel that ultimately
resolves to individual actions.

122 UML v 1.1, Semantics

Ordinary “wait states” can be included to model situations in which the computation waits for an
external event. Branches, forks, and joins may also be included to model decisions and concurrent
activity.

ActivityModels include the concept of Partitions to organize states according to various criteria,
such as the real-world organization responsible for their performance.

Activity modeling can be applied in the context of organizational modeling for business process
engineering and workflow modeling. In this context, events often originate from ‘outside’ the
system (e.g. ‘customer call’). Activity models can also be applied to system modeling to specify
the dynamics of operations and system level processes when a full interaction model is not needed.

 Associations

partition A set of Partitions each of which contains some of the model elements of the model.

 ActionState

An action state represents the execution of an atomic action, typically the invocation of an
operation.

An ActionState is a SimpleState with an entry action whose only exit Transition is triggered by the
implicit event of completing the execution of the entry action. The state therefore corresponds to
the execution of the entry action itself and the outgoing Transition is activated as soon as the
action has completed its execution.

An ActionState may perform more than one Action as part of its entry ActionSequence. An
ActionState may not have an exit transition, internal transitions, or external transitions triggered
by anything other than the implicit action completion event.

 Associations

entry (Inherited from State.) Specifies the invoked actions.

 ActivityState

An activity state represents the execution of a non-atomic sequence of steps that has some duration
(i.e., internally it consists of a set of actions and possibly waiting for events). That is, an activity
state is a “hierarchical action”, where an associated sub-activity model is executed.

An ActivityState is a SubmachineState that executes a nested activity model. When an input
transition to the ActivityState is triggered, execution begins with the initial state of the nested
ActivityModel. The outgoing Transition of an ActivityState is enabled when the final state of the
nested ActivityModel is reached (i.e., when it completes its execution).

The semantics of an ActivityState are equivalent to the model obtained by statically substituting the
contents of the nested model as a composite state replacing the activity state.

 Associations

submachine (Inherited from SubmachineState.) Designates an activity model that is conceptually
nested within the activity state. The activity state is conceptually equivalent to a
CompositeState whose contents are the states of the nested ActivityModel. The nested
activity model must have an initial state and a final state.

UML v 1.1, Semantics 123

 ClassifierInState
 A classifier in state characterizes instances of a given classifier for a particular state. In an
activity model, it may be input and/or output to an action through an object flow state.

 ClassifierInState is a subtype of Classifier and may be used in static structural models and
collaborations. e.g., it can be used to show associations that are only relevant when objects of a
class are in a given state.

 Associations

type Designates a Classifier that characterizes instances.

inState Designates a State that characterizes instances. The state must be a valid state of the
corresponding Classifier.

 ObjectFlowState

An object flow state defines an object flow between actions in an activity model. It signifies the
availability of an instance of a classifier in a given state, usually as the result of an operation. This
state indicates that an instance of the given class having the given state is available when the state
is occupied.

The generation of an object by an action in an ActionState may be modeled by an ObjectFlowState
that is triggered by the completion of the ActionState. The use of the object in a subsequent
ActionState may be modeled by connecting the output transition of the ObjectFlowState as an
input transition to the ActionState. Generally each action places the object in a different state that is
modeled as a distinct ObjectFlowState.

 Associations

typeState Designates the class (or other classifier) and state of the object.

 Partition

A partition is a mechanism for dividing the states of an activity model into groups. Partitions often
correspond to organizational units in a business model. They may be used to allocate characteristics
or resources among the states of an activity model.

 Associations

contents Specifies the states that belong to the partition. They need not constitute a nested region.

It should be noted that Partitions do not impact the dynamic semantics of the model but they help
to allocate properties and actions for various purposes.

 PseudoState

 A pseudo state is an abstraction of different types of nodes in a state machine graph which function
as transient points in transitions from one state to another, such as branching and forking.

Final PseudoStates are used for modeling hierarchical activities. A transition to a final
PseudoState within an ActivityModel can be used to indicate completion of a sub-ActivityModel
such that execution is resumed at the superstate level (i.e. outgoing superstate transitions will be

124 UML v 1.1, Semantics

activated). A nested activity model must have both an initial state and a final state or states.

11.7.3 Well-Formedness Rules

ActivityModel

[1] An ActivityModel specifies the dynamics of
(i) a Package, or
(ii) a Classifier (including UseCase), or
(iii) a BehavioralFeature.

 (self.context.oclIsTypeOf(Package) xor
 self.context.oclIsKindOf(Classifier) xor
 self.context.oclIsKindOf(BehavioralFeature))

[2] An ActivityModel that specifies the dynamics of a BehavioralFeature or that is nested has exactly one initial
State, representing the invocation of the BehavioralFeature or subactivity.

ActionState

 [1] An ActionState has exactly one outgoing Transition.

 self.outgoing->size = 1

[2] An ActionState has a non-empty Entry ActionSequence.

 self.entry.action->size > 0

[3] An ActionState does not have an internal Transition or an Exit ActionSequence.

 self.internalTransition->size = 0 and self.exit->size = 0

ObjectFlowState

 [1] The ClassifierInState of the ObjectFlowState is the type of an input Parameter to an Operation invoked in the
ActionStates which have the ObjectFlowState on an incoming Transition.

 self.outgoing.target->select(oclIsTypeOf(ActionState)).
 invoked.parameter->select(
 kind = #in or kind = #inout).type->includes(self.typeState.type)

[2] The ClassifierInState of the ObjectFlowState is the type of an output Parameter of an Operation invoked in the
ActionStates which have the ObjectFlowState on an outgoing Transition.

 self.incoming.source->select(oclIsTypeOf(ActionState)).
 invoked.parameter->select(
 kind = #out or kind = #inout or kind = #return).
 type->includes(self.typeState.type)

PseudoState

[1] In ActivityModels, Transitions incoming to (and outgoing from) join and fork PseudoStates have as sources
(targets) any StateVertex. That is, joins and forks are syntactically not restricted to be used in combination with
CompositeStates, as is the case in StateMachines.

self.stateMachine.oclIsTypeOf(ActivityModel) implies
((self.kind = #join or self.kind = #fork) implies

(self.incoming->forAll(source.oclIsKindOf(SimpleState) or
 source.oclIsTypeOf(PseudoState)) and

UML v 1.1, Semantics 125

(self.outgoing->forAll(source.oclIsKindOf(SimpleState) or
 source.oclIsTypeOf(PseudoState)))))

 [2] All of the paths leaving a fork must eventually rejoin in a subsequent join or joins. Furthermore, if there are
multiple layers of joins they must be well nested. Therefore the concurrency structure of an activity model is in
fact equally restrictive as that of an ordinary state machine, even though the composite states need not be
explicit.

11.7.4 Semantics

ActivityModel

The dynamic semantics of activity models can be expressed in terms of state machines. This means
that the process structure of activities formally must be equivalent to orthogonal regions (in
composite states). That is, transitions crossing between parallel paths (or threads) are not allowed.
As such, an activity specification that contains ‘unconstrained parallelism’ as is used in general
activity models is considered ‘incomplete’ in terms of UML.

All events that are not relevant in a state must be deferred so they are consumed when become
relevant. This is facilitated by the general deferral mechanism of state machines.

ActionState

As soon as the incoming transition of an ActionState is triggered (either through a single transition
or through an conjunction of transitions connected to a ‘join’), its entry action starts executing.
Once the entry action has finished executing, the action is considered completed. Hence, formally,
an activated action state signifies that the execution of an action is ongoing. When the action is
complete then the outgoing transition (either a simple transition or a ‘fork’) is enabled.

ObjectFlowState

The activation of an ObjectFlowState signifies that an instance of the associated Classifier is
available in a specified State (i.e., a state change has occurred as a result of a previous operation).
This may enable a subsequent action state that requires the instance as input. The execution of the
action consumes the value. If the ObjectFlowState leads into a join pseudostate, then the
ObjectFlowState remains activated until the other predecessors of the join have completed.

Unless there is an explicit ‘fork’ that creates orthogonal object states, only one of an
ObjectFlowState’s outgoing transitions will fire, based on the activation of the first ActionState
that requires it as input. The invocation of the ActionState will generally result in a state change of
the object, resulting in a new ObjectFlowState.

11.7.6 Notes

Object-flow states in activity models are a specialization of the general dataflow aspect of process
models. Object-flow activity models extend the semantics of standard dataflow relationships in
three areas:

• The operations in action states in activity models are operations of classes or types (e.g., ‘Trade’ or
‘OrderEntryClerk’). They are not hierarchical ‘functions’ operating on a dataflow.

126 UML v 1.1, Semantics

• The ‘contents’ of object flow states are typed. They are not unstructured data definitions as in data
stores.

• The state of the object flowing as input and output between operations is defined explicitly. It is the
event of the availability of an object in a specific state that forms a trigger for the operation that
requires the object as input. Object flow states are not stateless, passive data definitions as are data
stores.

UML v 1.1, Semantics 127

PART 4. GENERAL MECHANISMS
Part 4 defines mechanisms of general applicability to models. This version of UML contains one
general mechanisms package, Model Management. The Model Management package specifies how
model elements are organized into models, packages and systems.

Contents

12. Model Management

128 UML v 1.1, Semantics

12.MODEL MANAGEMENT PACKAGE

12.1 OVERVIEW

The Model Management package is a subpackage of the Behavioral Elements package. It defines
Model, Package and Subsystem, elements that serve mainly as grouping units for other
ModelElements. The package uses constructs defined in the Foundation package of UML as well
as in the Common Behavior package.

Packages are used within a Model to group ModelElements. A Subsystem is a special kind of
Package with an additional specification of the behavior offered by ModelElements in the
Subsystem.

In this section the term modeled system denotes the physical entity being modeled with UML, i.e.
the term is not one of the constructs in the modeling language. It can denote a computer system,
like a seat assignment system, a banking system, or a telephone exchange system. It can also
describe business processes, like a sales process, or a development process. An analogy with the
construction of houses would be that house would correspond to modeled system, while blue print
would correspond to model and element used in a blue print would correspond to model element in
UML.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Model Management package.

UML v 1.1, Semantics 129

12.2 ABSTRACT SYNTAX
The abstract syntax for the Model Management package is expressed in graphic notation in
Figure 23.

ElementReference
visibility : VisibilityKind
alias : Name GeneralizableElement

(from Core)

Subsystem
isInstantiable : Boolean

Model

ElementOwnership
visibility : VisibilityKind

ownedElement

*

namespace

0..1
Namespace
(from Core)

* Package

referencedElement

*

ModelElement
(from Core)

*

0..1

*

*

Classifier
(from Core)

Figure 23: Model Management

The following metaclasses are contained in the Model Management package:

 ElementReference

 An element reference defines the visibility and alias of a model element referenced by a package.

 In the metamodel an ElementReference reifies the relationship between a Package and a
ModelElement. It defines the alias for the ModelElement inside the Package and the visibility of
the ModelElement relative to the Package.

 Attributes

alias The alias defines a local name of the referenced ModelElement, to be used within the
Package.

visibility Each referenced ModelElement is either public, protected, or private relative to the
referencing Package.

130 UML v 1.1, Semantics

 Associations

• No extra associations.

Model

A model is an abstraction of a modeled system, specifying the modeled system from a certain
viewpoint and at a certain level of abstraction. A model is complete in the sense that it fully
describes the whole modeled system at the chosen level of abstraction and viewpoint.

In the metamodel Model is a subclass of Package. It contains a containment hierarchy of
ModelElements that together describe the modeled system. A Model also contains a set of
ModelElements, like Actors, which represents the environment of the system, together with their
interrelationships, such as Dependencies and Generalizations, and Constraints.

Different Models can be defined for the same modeled system, specifying it from different
viewpoints, like a logical model, a design model, a use-case model, etc. Each Model is self-
contained within its viewpoint of the modeled system and within the chosen level of abstraction.

Attributes

No extra attributes.

 Associations

No extra associations.

 Package

 A package is a grouping of model elements.

 In the metamodel a Package is a GeneralizableElement. A Package contains ModelElements like
Packages, Classifiers, and Associations. A Package may also contain Constraints and
Dependencies between ModelElements of the Package.

 A Package may have «import» dependencies to other Packages, allowing ModelElements in the
other Packages to be used by ModelElements in the first Package. The ModelElements available
in a Package are those owned by the Package together with those referenced, i.e. owned by other,
imported Packages. Furthermore, each ModelElement of a Package has a visibility relative to the
Package stating if the ModelElement is visible outside the Package or to a specialization of the
Package.

 Attributes

No extra attributes.

 Associations

referencedElement A Package references ModelElements in other, imported Packages.

 Subsystem

 A subsystem is a grouping of model elements, of which some constitute a specification of the

UML v 1.1, Semantics 131

behavior offered by the other contained model elements.

 In the metamodel Subsystem is a subclass of both Package and Classifier, whose Features are all
Operations. The contents of a Subsystem is divided into two subsets: specification elements and
realization elements. The former provides, together with the Operations of the Subsystem, a
specification of the behavior contained in the Subsystem, while the ModelElements in the latter
subset jointly provide a realization of the specification.

 The specification elements are UseCases together with their offered Interfaces, Constraints, and
relationships. The realization elements are Classes and Subsystems together with their associated
Interfaces, Constraints, and relationships. The relationship between the specification elements and
the realization elements is defined with a set of Collaborations.

 Attributes

isInstantiable States whether a Subsystem is instantiable or not. If true, then the instances of the model
elements within the subsystem form an implicit composition to an implicit subsystem
instance, whether or not it is actually implemented.

 Associations

No extra associations.

 12.3 WELL-FORMEDNESS RULES
 The following well-formedness rules apply to the Model Management package.

 ElementReference
 No extra well-formedness rules.

 Model
 No extra well-formedness rules.

 Package

 [1] A Package may only own or reference Packages, Subsystems, Classifiers, Associations, Generalizations,
Dependencies, Constraints, Collaborations, Messages, and Stereotypes.

 self.contents->forAll (c |
 c.oclIsKindOf(Package) or
 c.oclIsKindOf(Subsystem) or
 c.oclIsKindOf(Classifier) or
 c.oclIsKindOf(Association) or
 c.oclIsKindOf(Generalization) or
 c.oclIsKindOf(Dependency) or
 c.oclIsKindOf(Constraint) or
 c.oclIsKindOf(Collaboration) or
 c.oclIsKindOf(Message) or
 c.oclIsKindOf(Stereotype))

 [2] No referenced element (excluding Association) may have the same name or alias as any element owned by the
Package or one of its supertypes.

self.allReferencedElements->reject(re |

132 UML v 1.1, Semantics

re.oclIsKindOf(Association))->forAll(re |
(re.elementReference.alias <> ’’ implies

not (self.allContents - self.allReferencedElements)->reject(ve |
ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.elementReference.alias))
and
(re.elementReference.alias = ’’ implies

not (self.allContents - self.allReferencedElements)->reject (ve |
ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.name)))

[3] Referenced elements (excluding Association) may not have the same name or alias.

 self.allReferencedElements->reject(re |
 not re.oclIsKindOf (Association))->forAll(r1, r2 |
 (r1.elementReference.alias <> ’’ and r2.elementReference.alias <> ’’ and
 r1.elementReference.alias = r2.elementReference.alias implies r1 = r2)
 and
 (r1.elementReference.alias = ’’ and r2.elementReference.alias = ’’ and
 r1.name = r2.name implies r1 = r2)
 and
 (r1.elementReference.alias <> ’’ and r2.elementReference.alias = ’’ implies
 r1.elementReference.alias <> r2.name))

 [4] No referenced element (Association) may have the same name or alias combined with the same set of
associated Classifiers as any Association owned by the Package or one of its supertypes.

 self.allReferencedElements->select(re |
 re.oclIsKindOf(Association))->forAll(re |
 (re.elementReference.alias <> ’’ implies
 not (self.allContents - self.allReferencedElements)->select(ve |
 ve.oclIsKindOf(Association))->exists(ve : Association |
 ve.name = re.elementReference.alias
 and
 ve.connection->size = re.connection->size and
 Sequence {1..re.connection->size}->forAll(i |
 re.connection->at(i).type = ve.connection->at(i).type)))
 and
 (re.elementReference.alias = ’’ implies
 not (self.allContents - self.allReferencedElements)->select(ve |
 not ve.oclIsKindOf(Association))->exists(ve : Association |
 ve.name = re.name
 and
 ve.connection->size = re.connection->size and
 Sequence {1..re.connection->size}->forAll(i |
 re.connection->at(i).type = ve.connection->at(i).type))))

 [5] Referenced elements (Association) may not have the same name or alias combined with the same set of
associated Classifiers.

 self.allReferencedElements->select (re |
 re.oclIsKindOf (Association))->forAll (r1, r2 : Association |
 (r1.connection->size = r2.connection->size and
 Sequence {1..r1.connection->size}->forAll (i |
 r1.connection->at (i).type = r2.connection->at (i).type and
 r1.elementReference.alias <> ’’ and r2.elementReference.alias <> ’’ and
 r1.elementReference.alias = r2.elementReference.alias implies r1 = r2))
 and
 (r1.connection->size = r2.connection->size and
 Sequence {1..r1.connection->size}->forAll (i |
 r1.connection->at (i).type = r2.connection->at (i).type and
 r1.elementReference.alias = ’’ and r2.elementReference.alias = ’’ and
 r1.name = r2.name implies r1 = r2))

UML v 1.1, Semantics 133

 and
 (r1.connection->size = r2.connection->size and
 Sequence {1..r1.connection->size}->forAll (i |
 r1.connection->at (i).type = r2.connection->at (i).type and
 r1.elementReference.alias <> ’’ and r2.elementReference.alias = ’’ implies
 r1.elementReference.alias <> r2.name)))

[6] The referenced elements of a Package are the public elements of imported Packages, transitively.

self.referencedElement = self.requirement->select (d |
d.stereotype.name = ’import’).supplier.oclAsType(Package).allVisibleElements

[7] A Package imports all its owned Packages.

self.requirement->select (s |
s.stereotype.name = ’import’).supplier->includesAll(

self.ownedElement->select (e | e.oclIsKindOf (Package)))

 Additional Operations

[1] The operation contents results in a Set containing the ModelElements owned by or imported by the Package.

 contents : Set(ModelElement)
 contents = self.ownedElement->union(self.referencedElement)

[2] The operation allReferencedElements results in a Set containing the ModelElements referenced by the Package
or one of its supertypes.

allReferencedElements : Set(ModelElement)
allReferencedElements = self.referencedElement->union(

self.supertype.oclAsType(Package).allReferencedElements->select(re |
re.elementReference.visibility = #public or re.elementReference.visibility =

#protected))

 Subsystem

 [1] For each Operation in an Interface offered by a Subsystem, the Subsystem itself or at least one contained
UseCase must have a matching Operation.

 self.specification.allOperations->forAll(interOp |
 self.allOperations->union(self.allSpecificationElements.allOperations)->exists

 (op | op.hasSameSignature(interOp)))

 [2] The Features of a Subsystem may only be Operations.

 self.feature->forAll(f | f.oclIsKindOf(Operation))

 [3] Each Operation must be realized by a Collaboration.

 not self.isAbstract implies self.allOperations->forAll(op |
 self.allContents->select(c |
 c.oclIsKindOf(Collaboration))->exists(c : Collaboration|
 c.representedOperation = op))

 [4] Each specification element must be realized by a Collaboration.

 not self.isAbstract implies self.allSpecificationElements->forAll(s |
 self.allContents->select(c |
 c.oclIsKindOf(Collaboration))->exists(c : Collaboration|
 c.representedClassifier = s))

134 UML v 1.1, Semantics

 Additional Operations

[1] The operation allSpecificationElements results in a Set containing the ModelElements specifying the behavior
of the Subsystem.

 allSpecificationElements : Set(UseCase)
 allSpecificationElements = self.allContents->select(c | c.oclIsKindOf(UseCase))

 12.4 SEMANTICS

 Package

*

*
ModelElement

*
Package

*

*

*

Generalization
*

*

 The purpose of the package construct is to provide a general grouping mechanism. A package
cannot be instantiated, thus it has no runtime semantics; in fact, its only semantics is to define a
namespace for its contents. The package construct can be used for element organization of any
purpose; the criteria to use for grouping elements together into one package are not defined within
UML.

 A package owns a set of model elements, with the implication that if the package is removed from
the model, so are the elements owned by the package. Elements owned by the same package must
have unique names within the package, although elements in different packages may have the same
name.

 There may be relationships between elements contained in the same package, but not a priori
between an element in one package and an element outside that package. In other words, elements
outside a package are by default not available to elements inside the package. There are two ways
of making them available inside the package: by importing their containing packages or by
defining generalizations (see below) to these other packages. An import dependency (a
Dependency with the stereotype «import») from one package to another means that the first
package references all the elements with sufficient visibility in the second package. Referenced
elements are not owned by the package but they may be used in associations, generalizations,
attribute types, and other relationships. A package defines the visibility of its contained elements to
be private, protected, or public. Private elements are not available at all outside the containing
package, protected elements are available only to packages with generalizations to the containing
package, and public elements are available also to importing packages. Note, though, that the
visibility mechanism does not restrict the availability of an element to peer elements in the same
package.

 When an element is referenced by a package it extends the namespace of that package. It is
possible to give a referenced element an alias so it will not conflict with the names of the other
elements in the namespace, including other referenced elements. The alias will be the name of that
element in the namespace; the element will not appear under both the alias and its original name. If
an element is not given an alias, then it must be identified using its pathname, i.e., the
concatenation of the names of the enclosing packages starting with the top-most package.
Furthermore, an element may have the same or a more restrictive visibility in a package
referencing it than it has in the package owning it, e.g. an element that is public in one package
may be protected or private to a package referencing the element.

 A package importing another package references all the public contents of the namespace defined

UML v 1.1, Semantics 135

by the imported package, including elements of packages imported by the imported package. This
implies that import of packages is transitive, more specifically in the following sense: Assume
package A imports package B, which in turn imports package C. Then the public elements of C
which are public in B are also available to A.

 Packages are automatically imported by their containing package. Because of the recursiveness of
import, even elements contained within several levels of packages are available, according to the
visibility of contained elements. The visibility of an element contained within several levels of
packages is the most restrictive of the visibilities of all containing packages.

 A package can have generalizations to other packages. This means that the public and protected
elements owned or referenced by a package are also available to its heirs, and can be used in the
same way as any element referenced by the heirs themselves. Elements made available to another
package by the use of a generalization appear under their real names, not under aliases. Moreover,
they have the same visibility in the heir as they have in the owning package.

 A package can be used to define a framework, consisting of patterns in the form of e.g.
collaborations where (some of) the base elements are the parameters of the patterns. Apart from
that, a framework package is described as an ordinary package.

 Subsystem

 *
Interface

*
Operation

*

*

Generalization
*

Subsystem

*

*

*

* *

ModelElement
*

*

 The purpose of the subsystem construct is to provide a grouping mechanism with the possibility to
specify the behavior of the contents. A subsystem may or may not be instantiable. A non-
instantiable subsystem merely defines a namespace for its contents. The contents of a subsystem
has the same semantics as that of a package, thus it consists of ownedElements and
referencedElements, with unique names or aliases within the subsystem.

 The contents of a subsystem is divided into two subsets: specification elements and realization
elements. The specification elements are used for giving an abstract specification of the behavior
offered by the realization elements.

 The specification of a subsystem consists of the specification subset of the contents together with
the subsystem’s features (operations). It specifies the behavior performed jointly by instances of
classifiers in the realization subset, without revealing anything about the contents of this subset.
The specification is made in terms of use cases and/or operations, where use cases are used to
specify complete sequences performed by the subsystem (i.e. by instances of its contents)
interacting with its surroundings, while operations only specify fragments. Furthermore, the
specification part of a subsystem also includes constraints, relationships between the use cases, etc.

 A subsystem has no behavior of its own. All behavior defined in the specification of the subsystem
is jointly offered by the elements in the realization subset of the contents. In general, since they are
classifiers, subsystems can appear anywhere a classifier is expected. The general interpretation of
this is that since the subsystem itself cannot be instantiated or have any behavior of its own, the
requirements posed on the subsystem in the context where it occurs is fulfilled by its contents. The
same is true for associations; i.e. any association connected to a subsystem is actually connected to

136 UML v 1.1, Semantics

one of the classifiers it contains.

 The correspondence between the specification part and the realization part of a subsystem is
specified with a set of collaborations, at least one for each operation of the subsystem and for each
contained use case. Each collaboration specifies how instances of the realization elements
cooperate to jointly perform the behavior specified by the use case or operation, i.e. how the higher
level of abstraction is transformed into the lower level of abstraction. A message instance received
by an instance of a use case (higher level of abstraction) corresponds to an instance conforming to
one of the classifier roles in the collaboration receiving that message instance (lower level of
abstraction). This instance communicates with other instances conforming to other classifier roles
in the collaboration, and together they perform the behavior specified by the use case. All message
instances that can be received and sent by instances of the use cases are also received and sent by
the conforming instances, although at a lower level of abstraction. Similarly, application of an
operation of the subsystem actually means that a message instance is sent to a contained instance
that then performs a method.

 Importing of subsystems is done in the same way as for packages, using the visibility property to
define whether elements are public, protected, or private to the subsystem.

 A subsystem can have generalizations to other subsystems. This means that the public and
protected elements in the contents of a subsystem are also available to its heirs. In a concrete, i.e.
non-abstract, subsystem all elements in the specification, including elements from ancestors, must
be completely realized by cooperating realization elements, as specified with a set of
collaborations. This may not be true for abstract subsystems.

 Subsystems may offer a set of interfaces. This means that for each operation defined in an
interface, the subsystem offering the interface must have a matching operation, either as a feature
of the subsystem itself or of a use case. The relationship between interface and subsystem is not
necessarily one-to-one; a subsystem may realize several interfaces and one interface may be
realized by more than one subsystem.

 A subsystem can be used to define a framework, consisting of patterns in the form of e.g.
collaborations where (some of) the base elements are the parameters of the patterns. Furthermore,
the specification of a framework subsystem may also be parameterized.

 Model

 1

PackageModelElement Model

1**

 The purpose of a model is to describe the modeled system at a certain level of abstraction and from
a specific viewpoint, such as a logical or a behavioral view of the modeled system.

 A model describes the modeled system completely in the sense that it covers the whole modeled
system, although only those aspects relevant within the chosen level of abstraction and viewpoint
are represented in the model. The model consists of a containment hierarchy where the top-most
package represents the boundary of the modeled system.

 The model may also contain model elements describing relevant parts of the system’s environment.
The environment may be modeled by actors and their interfaces. These model elements and the
model elements representing the modeled system may be associated with each other. Such
associations are owned either by the model or by the top-most package. The contents of a model is
the transitive closure of its owned model elements, like packages, classifiers, and relationships.

UML v 1.1, Semantics 137

 Relationships between model elements in different models have no impact on the model elements’
meaning in their containing models because of the self-containment of models. Note, however, that
even if inter-model relationships do not express any semantics in relation to the models, they may
have semantics in relation to the reader or in deriving model elements as part of the overall
development process.

 A model may be a specialization of another model. This implies that all elements in the ancestor
are also available in the specialized model under the same name as in the ancestor.

12.5 STANDARD ELEMENTS

The predefined stereotypes, constraints and tagged values for the Model Management package are
listed in Table 6 and defined in the Standard Elements appendix.

Model Element Stereotypes Constraints Tagged Values

Package «facade»
«framework»
«stub»
«system»

Table 6: Model ManagementStandard Elements

 12.5 NOTES

 Because this is a logical model of the UML, distribution or sharing of models between tools is not
described.

 The visibility of an element in an importing package/subsystem may be more restrictive than its
visibility in the owning namespace. This is useful for example when a namespace makes parts of its
contents public to the surrounding namespace, but these elements are not available to the outside of
the surrounding namespace.

 In UML there are three different ways to model a group of elements contained in another element:
by using a package, a subsystem, or a class. Some pragmatics on their use:

• Packages are used when nothing but a plain grouping of elements is required.

• Subsystems provide grouping suitable for top-down development, since the requirements on
the behavior of their contents can be expressed before the realization of this behavior is
defined. The specification of a subsystem may also be seen as a provider of “high level APIs”
of the subsystem.

• Classes are used when the container itself should be instantiable, so that it is possible to
define composite objects.

138 UML v 1.1, Semantics

 APPENDICES
 The following appendices provide a summary of standard elements and a glossary.

Contents

 Appendix A: Standard Elements

 Appendix B: Glossary

UML v 1.1, Semantics 139

APPENDIX A: STANDARD ELEMENTS

 This appendix describes the predefined standard elements for UML. The standard elements are
organized into categories (stereotypes, tagged values and constraints) and are alphabetically
ordered.

A.1 STEREOTYPES

The following stereotypes are predefined in the UML; any stereotype that applies to a specific class
in the metamodel also applies to any subclasses of that class:

Name Applies to Description

«becomes» Dependency Becomes is a stereotyped dependency whose source and
target are represent the same instance at different points
in time, but each with potentially different values, state
instance, and roles. A becomes dependency from A to B
means that that instance A becomes B with possibly new
values, state instance, and roles at a different moment in
time/space.

«call» Dependency Call is a stereotyped dependency whose source is an
operation and whose target is an operation. A call
dependency specifies that the source invokes the target
operation. A call dependency may connect a source
operation to any target operation that is within scope,
including but not limited to operations of the enclosing
classifier and operations of other visible classifiers.

«copy» Dependency Copy is a stereotyped dependency whose source and
target are different instances, but each with the same
values, state instance, and roles (but a distinct identity).
A copy dependency from A to B means that B is an
exact copy of A. Future changes in A are not necessarily
reflected in B.

«create» BehavioralFeature Create is a stereotyped behavioral feature denoting that
the designated feature creates an instance of the
classifier to which the feature is attached.

Event Create is a stereotyped event denoting that the instance
enclosing the state machine to which the event type
applies is created. Create may only be applied to an
initial transition at the topmost level of this state
machine, and in fact, this is the only kind of trigger that
may be applied to an initial transition.

140 UML v 1.1, Semantics

«destroy» BehavioralFeature Delete is a stereotyped behavioral feature denoting that
the designated feature destroys an instance of the
classifier to which the feature is attached.

Event Delete is a stereotyped event denoting that the instance
enclosing the state machine to which the event type
applies is destroyed.

«deletion» Refinement Deletion is a stereotyped refinement having no clients
and no sub-refinements

«derived» Dependency Derived is a stereotyped dependency whose source and
target are both elements, usually but not necessarily of
the same type. A derived dependency specifies that the
source is derived from the target, meaning that the
source is not manifest, but rather is implicitly derived
from the target.

«document» Component Document is a stereotyped component representing a
document.

«enumeration» DataType Enumeration is a stereotyped data type, whose details
specify a domain consisting of a set of identifiers that are
the possible values of an instance of the data type

«executable» Component Executable is a stereotyped component denoting a
program that may be run on a Node.

«extends» Generalization Extends is a stereotyped generalization between use
cases. It specifies that the contents of the extending use
case may be added to the related use case. It not only
specifies where the contents should be added
(extensionPoint), but also if it only should be added if a
specified condition (BooleanExpression). When an
instance of the related use case reaches the extension
point and the condition is fulfilled, the instance
continues according to a sequence that is the result of
extending the original sequence with the extending
sequence at this point. It is required that the ordering of
the parts of the extending use case must be fulfilled if its
parts are inserted at different places.

«facade» Package Facade is a stereotyped package containing nothing but
references to model elements owned by another package.
It is used to provide a ‘public view’ of some of the
contents of a package. A Façade does not contain any
model elements of its own.

«file» Component File is a stereotyped component representing a document
containing source code or data.

UML v 1.1, Semantics 141

«framework» Package Framework is a stereotyped package consisting mainly
of patterns.

«friend» Dependency Friend is a stereotyped usage dependency whose source
is a model element, such as an operation, class, or
package, (or operation) and whose target is a different
package model element, such as a class or package. (or
operation). A friend relationship grants the source access
to the target regardless of the declared visibility. It
extends the visibility of the source so that the target can
see into the source.

«import» Dependency Import is a stereotyped dependency between two
packages, denoting that the public contents of the target
package are added to the namespace of the source
package.

«implementationClass» Class Implementation class is a stereotyped class that is not a
type and that represents the implementation of a class in
some programming language. An instance may have
zero or one implementation classes. This is in contrast to
plain general classes, wherein an instance may statically
have multiple classes at one time and may gain or lose
classes over time and an object (a subtype of instance)
may dynamically have multiple classes.

«inherits» Generalization Inherits is a stereotyped generalization denoting that
instances of the subtype are not substitutable for instance
of the supertype.

«instance» Dependency Instance is a stereotyped dependency whose source is an
instance and whose target is a classifier. An instance
dependency from I to C means that I is an instance of C.

«invariant» Constraint Invariant is a stereotyped constraint that must be
attached to a set of classifiers or relationships, and
denotes that the conditions of the constraint must hold
for the classifiers or relationships and their instances.

«library» Component Library is a stereotyped component representing a static
or dynamic library.

«metaclass» Dependency Metaclass is a stereotyped dependency whose source and
target are both classifiers and denoting that the target is
the metaclass of the source.

Classifer Metaclass is a stereotyped classifier denoting that the
class is a metaclass of some other class.

«postcondition» Constraint Postcondition is a stereotyped constraint that must be
attached to an operation, and denotes that the conditions

142 UML v 1.1, Semantics

of the constraint must hold after the invocation of the
operation.

«powertype» Classifier Powertype is a stereotyped classifier denoting that the
classifier is a metatype, whose instances are subtypes of
another type.

Dependency Powertype is a stereotyped dependency whose source is
a set of generalizations and whose target is a classifier
specifying that the target is the powertype of the source.

«precondition» Constraint Precondition is a stereotyped constraint that must be
attached to an operation, and denotes that the conditions
of the constraint must hold for the invocation of the
operation.

«private» Generalization Private is a stereotyped generalization of that specifies
private inheritance. It hides the inherited features of a
class and therefore renders it non-substitutable for
declarations of its ancestors.

«process» Classifier Process is a stereotyped classifier that is also an active
class, representing a heavy-weight flow of control.

«requirement» Comment Requirement is a stereotyped comment that states a
responsibility or obligation.

«send» Dependency Send is a stereotyped dependency whose source is an
operation and whose target is a signal, specifying that
the source sends the target signal.

«stereotype» Classifier Stereotype is a stereotyped classifier, denoting that the
classifier serves as a stereotype. This stereotype permits
modelers to model stereotype hierarchies.

«stub» Package Stub is a stereotyped package representing a package
that is incomplete transferred; specifically, a stub
provides the public parts of the package, but nothing
more.

«subclass» Generalization Subclass is a stereotyped generalization denoting that
instances of the subtype are not substitutable for instance
of the supertype

«subtraction» Refinement Subtraction is a stereotyped refinement having no clients
and no sub-refinements

«subtype» Generalization Subtype is a stereotyped generalization that offers no
different properties or behavior than basic
generalization. This stereotype exists as the opposite of

UML v 1.1, Semantics 143

subclass, so that subtyping versus subclassing can be
explicitly marked.

«system» Package System is a stereotyped package that represents a
collection of models of the same modeled system. The
models contained in the System all describe the modeled
system from different viewpoints, the viewpoints not
necessarily disjoint. The System therefore makes up a
comprehensive specification of the modeled systemit
is the top-most construct in the specification. A System
also contains all relationships and constraints between
model elements contained in different models. These
model elements add no semantic information to the
connected model elements, since each model shows a
complete view of the modeled system. Thus, these
model elements do not express information on the
modeled system as such, but rather on the models. e.g.,
they may be used for requirements tracking.

A modeled system may be realized by a set of
subordinate modeled systems, each described by its own
set of models collected in a separate System. A System
can only be contained in a System.

«table» Component Table is a stereotyped component representing a data
base table.

«thread» Classifier Thread is a stereotyped classifier that is also an active
class, representing a light-weight flow of control.

«topLevelPackage» Package TopLevelPackage is a stereotyped package denoting the
top-most package in a model, representing all the non-
environmental parts of the model. A TopLevelPackage is
at the top of the containment hierarchy in a model.

«type» Class Type is a stereotype of Class, meaning that the class is
used for specification of a domain of instances (objects)
together with the operations applicable to the objects. A
type may not contain any methods but it may have
attributes and associations.

«useCaseModel» Model UseCaseModel is a model that describes a system’s
functional requirements in terms of a set of use cases and
their interactions with actors. It is required that a
UseCaseModel only contains use cases and actors and
their relationships: extends and uses between use cases,
associations between use cases and actors, and
generalizations between actors.

«uses» Generalization Uses is a stereotyped generalization between use cases.
It specifies that the contents of the related use case is

144 UML v 1.1, Semantics

included (or used) in the description of the other use
case. It is typically used for extracting shared behavior.
It requires that the ordering of the parts of the used use
case must be fulfilled if its parts are used at different
places. Uses may only be defined between use cases.

«utility» Classifier Utility is a stereotyped classifier representing a classifier
that has not instances but rather denotes a named
collection of non-member attributes and operations, all
of which are class-scoped

A.2 TAGGED VALUES

The following tagged values are predefined in the UML; any tagged value that applies to a specific class
in the metamodel also applies to any subclasses of that class:

Name Applies to Description

documentation Element Documentation is a comment, description, or
explanation of the element to which it is attached.

location Classifier Location denotes that the classifier is a part of the given
component.

Component Location denotes that the component resides on given
node.

persistence Attribute Persistence denotes the permanence of the state of the
attribute, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is
not destroyed when the instance is destroyed).

Classifier Persistence denotes the permanence of the state of the
classifier, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is
not destroyed when the instance is destroyed).

Instance Persistence denotes the permanence of the state of the
instanced, marking it as transitory (its state is destroyed
when the instance is destroyed) or persistent (its state is
not destroyed when the instance is destroyed).

responsibility Classifier Responsibility is a contract by or an obligation of the
classifier.

semantics Classifier Semantics is the specification of the meaning of the
classifier.

UML v 1.1, Semantics 145

Operation Semantics is the specification of the meaning of the
operation.

A.3 CONSTRAINTS

The following constraints are predefined in the UML:

Name Applies to Description

association LinkEnd Association is a constraint applied to a link-end,
specifying that the corresponding instance is visible via
association

broadcast Request Broadcast is a constraint applied to a request sent to
multiple instances, specifying that it is sent
simultaneously to all target instances, in an undefined
unspecified order.

complete Generalization Complete is a constraint applied to a set of
generalizations, specifying that all subtypes have been
specified (although some may be elided) and that not
additional subtypes are permitted.

disjoint Generalization Disjoint is a constraint applied to a set of
generalizations, specifying that instance may have no
more than one of the given subtypes as a type of the
instance. This is the default semantics of generalization.

global LinkEnd Global is a constraint applied to a link-end, specifying
that the corresponding instance is visible because it is in
a global scope relative to the link.

implicit Association Implicit is a constraint applied to an association,
specifying that the association is not manifest, but rather
is only conceptual.

incomplete Generalization Incomplete is a constraint applied to a set of
generalizations, specifying that not all subtypes have
been specified (even if some are elided) and that
additional subtypes are permitted. This is the default
semantics of generalizations.

local LinkEnd Local is a constraint applied to a link-end, specifying
that the corresponding instance is visible because it is in
a local scope relative to the link.

or Association Or is a constraint applied to a set of associations,
specifying that over that set, only one is manifest for

146 UML v 1.1, Semantics

each associated instance. Or is an exclusive (not
inclusive) constraint.

overlapping Generalization Overlapping is a constraint applied to a set of
generalizations, specifying that instances may have more
than one of the given subtypes as a type of the instance.

parameter LinkEnd Parameter is a constraint applied to a link-end,
specifying that the corresponding instance is visible
because it is a parameter relative to the link

self LinkEnd Self is a constraint applied to a link-end, specifying that
the corresponding instance is visible because it is the
dispatcher of a request.

vote Request Vote is a constraint applied to a request, specifying that
the return value is selected by a majority vote of all the
return values returned from multiple instances.

UML v 1.1, Semantics 147

APPENDIX B: GLOSSARY

 This glossary defines the terms that are used to describe the Unified Modeling Language (UML).
In addition to UML-specific terminology it includes related terms from OMG standards and object-
oriented analysis and design methods. The glossary is intended for use by anyone who wants to
understand UML concepts and background. Glossary entries are organized alphabetically.

B.1 SCOPE
 This glossary includes terms from the following primary sources:

• UML Semantics

 UML Notation Guide In addition the following secondary sources have been used:

• Object Management Architecture object model [OMA]

• CORBA 2.0 [CORBA]

• Object Analysis & Design RFP-1 [OA&D RFP]

 [OMA], [CORBA] and [OA&D RFP] have been used to promote OMG-compliancy and provide
distributed object terms that complement UML. (When there are inconsistencies among the three
OMG sources, we have ranked their authority in the order listed.)

B.2 NOTATION CONVENTIONS
 The entries in the glossary usually begin with a lowercase letter. An initial uppercase letter is used
when a word is usually capitalized in standard practice. Acronyms are all capitalized, unless they
traditionally appear in all lowercase.

 When one or more words in a multi-word term is enclosed by brackets, it indicates that those words
are optional when referring to the term. For example, use case [class] may be referred to as simply
use case.

 The following conventions are used in this glossary:

• Contrast: <term>. Refers to a term that has an opposed or substantively different meaning.

• See: <term>. Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>. Indicates that the term has the same meaning as another term, which is
referenced.

• Acronym: <term>. This indicates that the term is an acronym. The reader is usually referred
to the spelled-out term for the definition, unless the spelled-out term is rarely used.

148 UML v 1.1, Semantics

abstract class
A class that cannot be directly instantiated. Contrast: concrete class.

abstraction
The essential characteristics of an entity that distinguish it from all other kind of entities. An abstraction defines
a boundary relative to the perspective of the viewer.

action
The specification of an executable statement that forms an abstraction of a computational procedure. An action
results in a change in the state of the model, and is realized by sending a message to an object or modifying a
value of an attribute.

action expression
An expression that resolves to a collection of actions.

action state
A state that represents the execution of an atomic action, typically the invocation of an operation.

activation
The execution of an action. Contrast: activation [OMA].

active class
A class whose instances are active objects. See: active object.

active object
An object that owns a thread and can initiate control activity. An instance of active class. See: active class,
thread.

activity diagram
A special case of a state diagram in which all or most of the states are action states and in which all or most of
the of the transitions are triggered by completion of actions in the source states. Contrast: state diagram.

actor [class]
A coherent set of roles that users of use cases play when interacting with these use cases. An actor has one role
for each use case with which it communicates.

actual parameter
Synonym: argument.

aggregate [class]
A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.

aggregation
A special form of association that specifies a whole-part relationship between the aggregate (whole) and a
component part. Contrast: composition.

analysis
The part of the software development process whose primary purpose is to formulate a model of the problem
domain. Analysis focuses what to do, design focuses on how to do it. Contrast: design.

analysis time
Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.

architecture
The organizational structure of a system. An architecture can be recursively decomposed into parts that interact
through interfaces, relationships that connect parts, and constraints for assembling parts.

UML v 1.1, Semantics 149

argument
A specific value corresponding to a parameter. Synonym: actual parameter. Contrast: parameter.

artifact
A piece of information that is used or produced by a software development process. An artifact can be a model,
a description or software.

association
The semantic relationship between two or more classifiers that involves connections among their instances.

association class
A modeling element that has both association and class properties. An association class can be seen as an
association that also has class properties, or as a class that also has association properties.

association end
The endpoint of an association, which connects the association to a classifier.

asynchronous action
A request where the sending object does not pause to wait for results. Synonym: asynchronous request [OMA].
Contrast: synchronous action.

attribute
A named slot within a classifier that describes a range of values that instances of the classifier may hold.
Synonym: attribute [OMA].

behavior
The observable effects of an operation or event, including its results. Synonym: behavior [OMA].

behavioral feature
A dynamic feature of a model element, such as an operation or method.

behavioral model aspect
A model aspect that emphasizes the behavior of the instances in a system, including their methods,
collaborations, and state histories

binary association
An association between two classes. A special case of an n-ary association.

binding
The creation of a model element from a template by supplying arguments for the parameters of the template.

boolean
An enumeration whose values are true and false.

boolean expression
An expression that evaluates to a boolean value.

cardinality
The number of elements in a set. Contrast: multiplicity.

class
A description of a set of objects that share the same attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to specify collections of operations it provides to its environment.
Synonym: class [OMA]. See: interface.

classifier
A mechanism that describes behavioral and structural features. Classifiers include interfaces, classes and
datatypes and components.

150 UML v 1.1, Semantics

class diagram
A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their
contents and relationships.

client
A classifier that requests a service from another classifier. Synonym: client object [OMA]. Contrast: supplier.

collaboration
The specification of how a classifier, such as a use case or operation, is realized by a set of classifiers and
associations playing specific roles. used in a specific way. The collaboration defines an interaction. See:
interaction.

collaboration diagram
A diagram that shows interactions organized around instances and their links to each other. Unlike a sequence
diagram a collaboration diagram shows the relationships among the instances. Sequence diagrams and
collaboration diagrams express similar information, but show it in different ways. See: sequence diagram.

comment
An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.

communication association
In a deployment diagram an association between nodes that implies a communication. See: deployment diagram.

compile time
Refers to something that occurs during the compilation of a software module. See: modeling time, run time.

component
An executable software module with identity and a well-defined interface. Contrast: component [OMA].

component diagram
A diagram that shows the organizations and dependencies among components.

composite [class]
A class that is related to one or more classes by a composition relationship. See: composition.

composite aggregation
Synonym: composition.

composite state
A state that consists of either concurrent substates or disjoint substates. Contrast: substate.

composition
A form of aggregation with strong ownership and coincident lifetime as part of the whole. Parts with non-fixed
multiplicity may be created after the composite itself, but once created they live and die with it (i.e., they share
lifetimes). Such parts can also be explicitly removed before the death of the composite. Composition may be
recursive. Synonym: composite aggregation.

concrete class
A class that can be directly instantiated. Contrast: abstract class.

concurrency
The occurrence of two or more activities during the same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more threads. See: thread.

concurrent substate
A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

UML v 1.1, Semantics 151

constraint
A semantic condition or restriction. Certain constraints are predefined in the UML, others may be user defined.
Constraints are one of three extendibility mechanisms in UML. See: tagged value, stereotype.

container
1. An instance that exists to contain other instances, and that provides operations to access or iterate over its
contents. For example, arrays, lists, sets. 2. A component that exists to contain other components.

containment hierarchy
A namespace hierarchy consisting of model elements, and the containment relationships that exist between
them. A containment hierarchy forms an acyclic graph.

context
A view of a set of related modeling elements for a particular purpose, such as specifying an operation.

datatype
A type whose values have no identity. Datatypes include primitive built-in types (such as numbers and strings)
as well as enumeration types (such as boolean).

delegation
The ability of an object to issue a message to another object in response to a message. Delegation can be used as
an alternative to inheritance. Synonym: delegation [OMA]. Contrast: inheritance.

dependency
A relationship between two modeling elements, in which a change to one modeling element (the independent
element) will affect the other modeling element (the dependent element).

deployment diagram
A diagram that shows the configuration of run-time processing nodes and the components, processes, and
objects that live on them. Components represent run-time manifestations of code units. See: component
diagrams.

derived element
A model element that can be computed from another element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic information.

design
The part of the software development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and
quality requirements of a system.

design time
Refers to something that occurs during a design phase of the software development process. See: modeling time.
Contrast: analysis time.

development process
A set of partially ordered steps performed for a given purpose during software development, such as
constructing models or implementing models.

diagram
A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML supports the following diagrams: class diagram,
object diagram, use case diagram, sequence diagram, collaboration diagram, state diagram, activity diagram,
component diagram, and deployment diagram.

disjoint substate
A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

152 UML v 1.1, Semantics

distribution unit
A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can
be represented by a run-time composite or an aggregate.

domain
An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

dynamic classification
A semantic variation of generalization in which an object may change type or role. Contrast: static classification.

element
An atomic constituent of a model.

enumeration
A list of named values used as the range of a particular attribute type. For example, RGBColor = {red, green,
blue}. Boolean is a predefined enumeration with the values {false, true}.

event
The specification of a significant occurrence that has a location in time and space. In the context of state
diagrams, an event is an occurrence that can trigger a state transition.

export
In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.

expression
A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a
value of type number.

extends
A relationship from one use case to another, specifying how the behavior defined for the first use case can be
inserted into the behavior defined for the second use case.

feature
A property, like operation or attribute, which is encapsulated within another entity, such as an interface, a class
or a datatype.

fire
To execute a state transition. See: transition.

focus of control
A symbol on a sequence diagram that shows the period of time during which an object is performing an action,
either directly or through a subordinate procedure.

formal parameter
Synonym: parameter.

framework
A micro-architecture that provides an extensible template for applications within a specific domain.

generalizable element
A model element that may participate in a generalization relationship. See: generalization.

generalization
A taxonomic relationship between a more general element and a more specific element. The more specific
element is fully consistent with the more general element and contains additional information. An instance of
the more specific element may be used where the more general element is allowed. Synonym: generalization

UML v 1.1, Semantics 153

[OMA]. See: inheritance.

guard condition
A condition that must be satisfied in order to enable an associated transition to fire.

implementation
A definition of how something is constructed or computed. For example, a class is an implementation of a type,
a method is an implementation of an operation. Synonym: implementation [OMA].

implementation inheritance
The inheritance of the implementation of a more specific element. Includes inheritance of the interface.
Synonym: implementation inheritance. Contrast: interface inheritance.

import
In the context of packages, a dependency that shows the packages whose classes may be referenced within a
given package (including packages recursively embedded within it). Contrast: import [OMA], export.

inheritance
The mechanism by which more specific elements incorporate structure and behavior of more general elements
related by behavior. See generalization. Synonym: inheritance [OMA].

instance
An entity to which a set of operations can be applied and which has a state that stores the effects of the
operations. See: object.

interaction
A specification of how messages are sent between instances to perform a specific task. The interaction is
defined in the context of a collaboration. See collaboration.

interaction diagram
A generic term that applies to several types of diagrams that emphasize object interactions. These include:
collaboration diagrams, sequence diagrams, and activity diagrams

interface
A declaration of a collection of operations that may be used for defining a service offered by an instance.
Synonym: interface [OMA].

interface inheritance
The inheritance of the interface of a more specific element. Does not includes inheritance of the
implementation. Synonym: interface inheritance [OMA]. Contrast: implementation inheritance.

layer
A specific way of grouping packages in a model at the same level of abstraction.

link
A semantic connection among a tuple of objects. An instance of an association. Synonym: link [OMA]. See:
association.

link end
An instance of an association end. See: association end.

message
A specification of a communication between instances that conveys information with the expectation that
activity will ensue. The receipt of a message instance is normally considered an instance of an event.

metaclass
A class whose instances are classes. Metaclasses are typically used to construct metamodels.

154 UML v 1.1, Semantics

meta-metamodel
A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and
a metamodel is analogous to the relationship between a metamodel and a model.

metamodel
A model that defines the language for expressing a model. An instance of a meta-metamodel.

metaobject
A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses,
metaattributes, and metaassociations. Synonym: metaobject [OMA].

method
The implementation of an operation. It specifies the algorithm or procedure that effects the results of an
operation. Synonym: method [OMA].

model
A semantically closed abstraction of a system. See: system.

model aspect
A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural
model aspect emphasizes the structural qualities of the metamodel.

model element
An element that is an abstraction drawn from the system being modeled. Contrast: view element.

modeling time
Refers to something that occurs during a modeling phase of the software development process. It includes
analysis time and design time. Usage note: When discussing object systems it is often important to distinguish
between modeling-time and run-time concerns. See: analysis time, design time. Contrast: run time.

module
A software unit of storage and manipulation. Modules include source code modules, binary code modules, and
executable code modules. See: component.

multiple classification
A semantic variation of generalization in which an object may belong directly to more than one class. See:
dynamic classification.

multiple inheritance
A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.

multiplicity
A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for roles within associations, parts within composites, repetitions, and other purposes. Essentially a
multiplicity is a (possibly infinite) subset of the non-negative integers. Contrast: cardinality.

n-ary association
An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.

name
A string used to identify a model element.

namespace
A part of the model in which the names may be defined and used. Within a namespace, each name has a unique
meaning. See: name.

UML v 1.1, Semantics 155

node
A node is a run-time physical object that represents a computational resource, generally having at least a
memory and often processing capability as well. Run-time objects and components may reside on nodes.

object
An entity with a well-defined boundary and identity that encapsulates state and behavior. State is represented by
attributes and relationships, behavior is represented by operations, methods, and state machines. An object is an
instance of a class. Synonym: object [OMA]. See: class, instance.

object diagram
A diagram that encompasses objects and their relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a collaboration diagram. See: class diagram, collaboration
diagram.

object lifeline
A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence
diagram.

operation
A service that can be requested from an object to effect behavior. An operation has a signature, which may
restrict the actual parameters that are possible. Synonym: operation [OMA].

package
A general purpose mechanism for organizing elements into groups. Packages may be nested within other
packages. A system may be thought of as a single high-level package, with everything else in the system
contained in it.

parameter
The specification of a variable that can be changed, passed or returned. A parameter may include a name, type
and direction. Parameters are used for operations, messages and events. Synonyms: parameter [OMA], formal
parameter. Contrast: argument.

parameterized element
The descriptor for a class with one or more unbound parameters. Synonym: template.

participates
A relationship that indicates the role that an instance plays in a modeling element. For example, a class
participates in an association, an actor participates in a use case. Contrast: participate [OMA].

persistent object
An object that exists after the process or thread that created it has ceased to exist. Synonym: persistent object
[OMA].

postcondition
A constraint that must be true at the completion of an operation.

precondition
A constraint that must be true when an operation is invoked.

primitive type
A predefined basic type, such as an integer or a string.

process
A thread that can execute concurrently with other threads.

product
The artifacts of development, such as models, code, documentation, work plans.

156 UML v 1.1, Semantics

projection
A mapping from a set to a subset of it.

property
A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See: tagged value. Synonym: property [OMA].

pseudo-state
A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include
initial, final, and history vertices.

qualifier
An association attribute or tuple of attributes whose values partition the set of objects related to an object across
an association. reception
A declaration that a classifier is prepared to react to the receipt of a signal.

receive [a message]
The handling of a message instance passed from a sender object. See: sender, receiver.

receiver [object]
The object handling a message instance passed from a sender object. Contrast: sender.

reference
1. A denotation of a model element. 2. A named slot within a classifier that facilitates navigation to other
classifiers.

refinement
A relationship that represents a fuller specification of something that has already been specified at a certain
level of detail. For example, a design class is a refinement of an analysis class.

relationship
A semantic connection among model elements. Examples of relationships include associations and
generalizations.

repository
A storage place for object models, interfaces and implementations.

request
A request is the specification of a stimulus being sent to instances. It can be either an operation or a signal.

requirement
A desired feature, property, or behavior of a system.

responsibility
A contract or obligation of a type or class.

reuse
The use of a pre-existing artifact.

role
The named specific behavior of an entity participating in a particular context. A role may be static (e.g., an
association end) or dynamic (e.g., a collaboration role).

run time
The period of time during which a computer program executes. Contrast: modeling time.

scenario
A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction. See:

UML v 1.1, Semantics 157

interaction.

semantic variation point
A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message]
The passing of a message instance from a sender object to a receiver object. See: sender, receiver.

sender [object]
The object passing a message instance to a receiver object. Contrast: receiver.

sequence diagram
A diagram that shows object interactions arranged in time sequence. In particular, it shows the objects
participating in the interaction and the sequence of messages exchanged. Unlike a collaboration diagram, a
sequence diagram includes time sequences but does not include object relationships. A sequence diagram can
exist in a generic form (describes all possible scenarios) and in an instance form (describes one actual scenario).
Sequence diagrams and collaboration diagrams express similar information, but show it in different ways. See:
collaboration diagram.

signal
The specification of an asynchronous stimulus communicated between instances. Signals may have parameters.

signature
The name and parameters of a behavioral feature. A signature may include an optional returned parameter.
Synonym: signature [OMA].

single inheritance
A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple
inheritance [OMA]. Contrast: multiple inheritance.

specification
A declarative description of what something is or does. Contrast: implementation.

state
A condition or situation during the life of an object during which it satisfies some condition, performs some
activity, or waits for some event. Contrast: state [OMA].

statechart diagram
A diagram that shows a state machine. See: state machine.

state machine
A behavior that specifies the sequences of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions.

static classification
A semantic variation of generalization in which an object may not change type or may not change role.
Contrast: dynamic classification.

stereotype
A new type of modeling element that extends the semantics of the metamodel. Stereotypes must be based on
certain existing types or classes in the metamodel. Stereotypes may extend the semantics, but not the structure
of pre-existing types and classes. Certain stereotypes are predefined in the UML, others may be user defined.
Stereotypes are one of three extendibility mechanisms in UML. See: constraint, tagged value.

string
A sequence of text characters. The details of string representation depend on implementation, and may include
character sets that support international characters and graphics.

158 UML v 1.1, Semantics

structural feature
A static feature of a model element, such as an attribute.

structural model aspect
A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes and operations.

subclass
In a generalization relationship the specialization of another class, the superclass. See: generalization. Contrast:
superclass.

substate
A state that is part of a composite state. See: concurrent state, disjoint state.

subsystem
A subsystem is a grouping of model elements, of which some constitute a specification of the behavior offered
by the other contained model elements. See package. Contrast: system.

subtype
In a generalization relationship the specialization of another type, the supertype. See: generalization. Contrast:
supertype.

superclass
In a generalization relationship the generalization of another class, the subclass. See: generalization. Contrast:
subclass.

supertype
In a generalization relationship the generalization of another type, the subtype. Synonym: supertype [OMA].
See: generalization. Contrast: subtype.

supplier
A type, class or component that provides services that can be invoked by others. Synonym: server object
[OMA]. Contrast: client.

swimlane
A partition on interaction diagrams for organizing responsibilities for actions. They often correspond to
organizational units in a business model.

synchronous action
A request where the sending object pauses to wait for results. Synonym: synchronous request [OMA]. Contrast:
asynchronous action.

system
A collection of connected units that are organized to accomplish a specific purpose. A system can be described
by one or more models, possibly from different viewpoints.

tagged value
The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag.
Certain tags are predefined in the UML; others may be user defined. Tagged values are one of three
extendibility mechanisms in UML. See: constraint, stereotype.

template
Synonym: parameterized element.

thread [of control]
A single path of execution through a program, a dynamic model, or some other representation of control flow.
See process.

UML v 1.1, Semantics 159

time
A value representing an absolute or relative moment in time.

time event
An event that denotes the time elapsed since the current state was entered. See: event.

time expression
An expression that resolves to an absolute or relative value of time.

timing mark
A denotation for the time at which an event or message occurs. Timing marks may be used in constraints.

trace
A dependency that indicates a historical or process relationship between two elements that represent the same
concept without specific rules for deriving one from the other.

transient object
An object that exists only during the execution of the process or thread that created it. Synonym: transient
object [OMA].

transition
A relationship between two states indicating that an object in the first state will perform certain specified
actions and enter the second state when a specified event occurs and specified conditions are satisfied. On such
a change of state the transition is said to fire.

type
 A stereotype of class that is used to specify a domain of instances (objects) together with the operations
applicable to the objects. A type may not contain any methods. Synonym: type [OMA]. See: class, instance.
Contrast: interface.

type expression
An expression that evaluates to a reference to one or more types.

uninterpreted
A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value
has a corresponding string representation. See: any [CORBA].

usage
A dependency in which one element (the client) requires the presence of another element (the supplier) for its
correct functioning or implementation.

use case [class]
 The specification of a sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case instances.

use case diagram
A diagram that shows the relationships among actors and use cases within a system.

use case instance
 The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class.

use case model
A model that describes a system’s functional requirements in terms of use cases.

uses
A relationship from a use case to another use case in which the behavior defined for the former use case
employs the behavior defined for the latter.

160 UML v 1.1, Semantics

utility
A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes
and operations become global variables and global procedures, respectively. A utility is not a fundamental
modeling construct but a programming convenience.

value
An element of a type domain. Contrast: value [OMA].

vertex
A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state,
pseudo-state.

view
A projection of a model, which is seen from a given perspective or vantage point and omits entities that are not
relevant to this perspective.

view element
A view element is a textual and/or graphical projection of a collection of model elements.

view projection
A projection of model elements onto view elements. A view projection provides a location and a style for each
view element.

visibility
An enumeration whose value (public, protected, or private) denotes how the model element to which it refers
may be seen outside its enclosing namespace.

UML v 1.1, Semantics 161

INDEX

A
Action, 74, 84
ActionSequence, 74
ActionState, 128, 130, 131
ActivityModel, 127, 130, 131
ActivityState, 128
Actor, 96, 97, 98
AggregationKind, 66
Argument, 74
Association, 23, 33, 43
AssociationClass, 24, 34, 45
AssociationEnd, 24, 34
AssociationEndRole, 87, 90
AssociationRole, 88, 90
Attribute, 25, 34
AttributeLink, 75, 79

B
BehavioralFeature, 26, 34
Binding, 50, 53
Boolean, 67
BooleanExpression, 67

C
CallAction, 75, 79
CallEvent, 105
ChangeableKind, 67
ChangeEvent, 105, 109
Class, 26, 35, 41
Classifier, 27, 35
ClassifierInState, 129
ClassifierRole, 88, 90
Collaboration, 88, 90
Collaboration, 92
Comment, 50, 54
Component, 51, 54
CompositeState, 105, 109
Constraint, 27, 37, 59, 62
CreateAction, 75, 80

D
DataType, 28, 37
DataValue, 76, 80
Dependency, 28, 37, 51, 54, 147
DestroyAction, 75, 80

E
Element, 28, 37
ElementReference, 135, 137

Enumeration, 67
EnumerationLiteral, 67
Event, 106
Exception, 76
Expression, 67

F
Feature, 29, 37

G
GeneralizableElement, 29, 37
Generalization, 30, 38
Geometry, 67
GraphicMarker, 67
Guard, 106, 110

I
Instance, 76, 80, 147
instance of, 147
Integer, 67
Interaction, 89, 91, 93
Interface, 30, 38, 43

L
Link, 83
Link, 76, 81
LinkEnd, 77, 81
LinkObject, 77, 81
LocalInvocation, 77, 110

M
Mapping, 67
Message, 89, 91
MessageDirectionKind, 67
MessageInstance, 77, 81
Method, 31, 38
Model, 136, 137, 142
ModelElement, 31, 38, 51, 54, 62
Multiplicity, 67
MultiplicityRange, 68

N
Name, 68
namespace, 27
Namespace, 31, 39
Node, 52, 54

162 UML v 1.1, Semantics

O
Object, 78, 82
Object and DataValue, 83
ObjectFlowState, 129, 130, 131
ObjectSetExpression, 68
Operation, 32, 40
OperationDirectionKind, 68
OwnedElement, 28, 37

P
Package, 136, 137, 140
Parameter, 32, 40
ParameterDirectionKind, 68
Partition, 129
Presentation, 52, 54
PrimitiveType, 68
ProcedureExpression, 68
PseudoState, 106, 110, 129, 130
PseudostateKind, 68

R
RaiseAction, 78, 82
Reception, 78, 82
Refinement, 52, 54
Request, 78, 83

S
ScopeKind, 68
Signal, 79, 82
SignalAction, 107
source, 147

State, 107
StateMachine, 107, 110
StateVertex, 108, 118
Stereotype, 60, 62
String, 68
StructuralFeature, 33, 40
Structure, 68
SubmachineState, 108
Subsystem, 136, 139, 141
SynchronousKind, 69

T
TaggedValue, 61, 63
target, 147
Template, 55
TerminateAction, 79, 82
Time, 69
TimeEvent, 109
TimeExpression, 69
Trace, 53, 55
Transition, 109, 111

U
Uninterpreted, 69
UninterpretedAction, 79
Usage, 53, 55
UseCase, 96, 97, 98, 99
UseCaseInstance, 97, 98

V
ViewElement, 53, 55
VisibilityKind, 69

