
ad/97-08-03

UML Summary

version 1.1
1 September 1997

Rational Software ■ Microsoft ■ Hewlett-Packard ■ Oracle
Sterling Software ■ MCI Systemhouse ■ Unisys ■ ICON Computing

IntelliCorp ■ i-Logix ■ IBM ■ ObjecTime ■ Platinum Technology ■ Ptech
Taskon ■ Reich Technologies ■ Softeam

ii UML Summary, v1.1

Copyright © 1997 Rational Software Corporation.
Copyright © 1997 Microsoft Corporation.
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.
Copyright © 1997 Sterling Software.
Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.
Copyright © 1997 ICON Computing.
Copyright © 1997 IntelliCorp.
Copyright © 1997 i-Logix.
Copyright © 1997 IBM Corporation.
Copyright © 1997 ObjecTime Limited.
Copyright © 1997 Platinum Technology Inc.
Copyright © 1997 Ptech Inc.
Copyright © 1997 Taskon A/S.
Copyright © 1997 Reich Technologies.
Copyright © 1997 Softeam.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this entire
notice, including the following statement:

The most recent updates on the Unified Modeling Language are available via the
worldwide web, www.rational.com/uml.

The UML logo and Objectory are trademarks of Rational Software Corp.
OMG, CORBA, CORBAfacility, and IDL are trademarks of the Object Management Group, Inc.

UML Summary, v1.1 iii

Contents
1. PREFACE 1

1.1 Intended Audience ...1

2. MOTIVATION TO DEFINE THE UML 1
2.1 Why We Model..2
2.2 Industry Trends in Software ...2
2.3 Prior to Industry Convergence ...2

3. GOALS OF THE UML 3

4. SCOPE OF THE UML 4
4.1 Primary Artifacts of the UML..5
4.2 Outside The Scope of the UML ...8
4.3 Comparing UML to Other Modeling Languages ...9
4.4 New features of the UML...10

5. UML PAST, PRESENT, AND FUTURE 11
5.1 UML 0.8 - 0.91 ..11
5.2 UML 1.0 - 1.1 and the UML Partners ..13
5.3 Summary of Changes between 1.0 and 1.1...15
5.4 UML Present and Future..16
5.5 Additional Information...17

6. ACKNOWLEDGMENTS 17

7. REFERENCES 18

UML Summary, v1.1 1

1. PREFACE

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing,
and documenting the artifacts of software systems, as well as for business modeling and other
non-software systems. The UML represents a collection of best engineering practices that have
proven successful in the modeling of large and complex systems.

The UML definition consists of the following documents:

UML Semantics - defines the rich semantics and expressive syntax of the Unified
Modeling Language. The UML is layered architecturally and organized by package.
Within each package, the model elements are defined in terms of their abstract syntax
(using the UML class diagram notation), well-formedness rules (using text and Object
Constraint Language expressions), and semantics (using precise text). Two appendices
are included: UML Glossary and Standard Elements.

UML Notation Guide - defines notion and provides supporting examples. The UML
notation represents the graphic syntax for expressing the semantics described by the
UML metamodel.

UML Extension for the Objectory Process for Software Engineeering and UML
Extension for Business Modeling - These UML extensions includes process- and
domain-specific extensions to the UML, in terms of its extension mechanisms and
process-specific diagram icons.

The UML uses OCL, defined separately in the Object Constraint Language Specification
document.

1.1 INTENDED AUDIENCE

This document set is intended primarily as a precise and self-consistent definition of the UML’s
semantics and notation. The primary audience of this document set consists of the Object
Management Group, standards organizations, book authors, trainers, and tool builders. The
authors assume familiarity with object-oriented analysis and design methods. These documents
are not written as an introductory text on building object models for complex systems, although
they could be used in conjunction with other materials or instruction. This set of documents will
become more approachable to a broader audience as additional books, training courses, and tools
that apply the UML become available.

2. MOTIVATION TO DEFINE THE UML

This section describes several factors motivating the UML. We discuss why modeling is
essential, highlight a few key trends in the software industry, and describe the issues caused by
divergence of modeling approaches.

2 UML Summary, v1.1

2.1 WHY WE MODEL

Developing a model for an industrial-strength software system prior to its construction or
renovation is as essential as having a blueprint for large building. Good models are essential for
communication among project teams and to assure architectural soundness. We build models of
complex systems because we cannot comprehend any such system in its entirety. As the
complexity of systems increase, so does the importance of good modeling techniques. There are
many additional factors of a project’s success, but having a rigorous modeling language standard
is one essential factor. A modeling language must include:

• Model elements — fundamental modeling concepts and semantics
• Notation — visual rendering of model elements
• Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become essential. The
UML is a well-defined and widely accepted response to that need. It is the visual modeling
language of choice for building object-oriented and component-based systems.

2.2 INDUSTRY TRENDS IN SOFTWARE

As the strategic value of software increases for many companies, the industry looks for
techniques to automate the production of software. We look for techniques to improve quality
and reduce cost and time-to-market. These techniques include component technology, visual
programming, patterns, and frameworks. We also seek techniques to manage the complexity of
systems as they increase in scope and scale. In particular, we recognize the need to solve
recurring architectural problems, such as physical distribution, concurrency, replication, security,
load balancing, and fault tolerance. Development for the worldwide web makes some things
simpler, but exacerbates these architectural problems.

Complexity will vary by application domain and process phase. One of the key motivations in
the minds of the UML developers was to create a set of semantics and notation that adequately
addresses all scales of architectural complexity, across all domains.

2.3 PRIOR TO INDUSTRY CONVERGENCE

Prior to the UML, there was no clearly leading modeling language. Users had to choose from
among many similar modeling languages with minor difference in overall expressive power.
Most of the modeling languages shared a set of commonly accepted concepts that are expressed
slightly differently in different languages. This lack of agreement discouraged new users from
entering the OO market and from doing OO modeling, without greatly expanding the power of
modeling. Users longed for the industry to adopt one, or a very few, broadly supported modeling
languages suitable for general-purpose usage. They wanted a lingua franca for modeling.

Some vendors were discouraged from entering the OO modeling area because of the need to
support many similar, but slightly different, modeling languages. In particular, the supply of add-
on tools has been depressed because small vendors cannot afford to support many different
formats from many different front-end modeling tools. It is important to the entire OO industry to
encourage broadly based tools and vendors, as well as niche products that cater to the needs of
specialized groups.

UML Summary, v1.1 3

The perpetual cost of using and supporting many modeling languages motivated many companies
producing or using OO technology to endorse and support the development of the UML.

While the UML does not guarantee project success, it does improve many things. For example,
it significantly lowers the perpetual cost of training and retooling when changing between
projects or organizations. It provides the opportunity for new integration between tools,
processes, and domains. But most importantly, it enables developers to focus on delivering
business value and provides them a paradigm to accomplish this.

3. GOALS OF THE UML

The primary goals in the design of the UML were as follow:

1) Provide users a ready-to-use, expressive visual modeling language so they can develop
and exchange meaningful models.

2) Provide extensibility and specialization mechanisms to extend the core concepts.

3) Be independent of particular programming languages and development processes.

4) Provide a formal basis for understanding the modeling language.

5) Encourage the growth of the OO tools market.

6) Support higher-level development concepts such as collaborations, frameworks,
patterns, and components.

7) Integrate best practices.

These goals are discussed, below.

Provide users a ready-to-use, expressive visual modeling language so they can develop and
exchange meaningful models. It is important that the OOAD standard support a modeling
language that can be used “out of the box” to do normal general-purpose modeling tasks. If the
standard merely provides a meta-meta-description that requires tailoring to a particular set of
modeling concepts, then it will not achieve the purpose of allowing users to exchange models
without losing information or without imposing excessive work to map their models to a very
abstract form. The UML consolidates a set of core modeling concepts that are generally
accepted across many current methods and modeling tools. These concepts are needed in many
or most large applications, although not every concept is needed in every part of every
application. Specifying a meta-meta-level format for the concepts is not sufficient for model
users, because the concepts must be made concrete for real modeling to occur. If the concepts in
different application areas were substantially different, then such an approach might work, but
the core concepts needed by most application areas are similar and should therefore be supported
directly by he standard without the need for another layer.

Provide extensibility and specialization mechanisms to extend the core concepts. We expect that
the UML will be tailored as new needs are discovered and for specific domains. At the same
time, we do not want to force the common core concepts to be redefined or re-implemented for

4 UML Summary, v1.1

each tailored area. Therefore we believe that the extension mechanisms should support
deviations from the common case, rather than being required to implement the core OOA&D
concepts themselves. The core concepts should not be changed more than necessary. Users need
to be able to 1) build models using core concepts without using extension mechanisms for most
normal applications; 2) add new concepts and notations for issues not covered by the core; 3)
choose among variant interpretations of existing concepts, when there is no clear consensus; and
4) specialize the concepts, notations, and constraints for particular application domains.

Be independent of particular programming languages and development processes. The UML
must and can support all reasonable programming languages. It also must and can support
various methods and processes of building models. The UML can support multiple programming
languages and development methods without excessive difficulty.

Provide a formal basis for understanding the modeling language. Because users will use
formality to help understand the language, it must be both precise and approachable; a lack of
either dimension damages its usefulness. The formalisms must not require excessive levels of
indirection or layering, use of low-level mathematical notations distant from the modeling
domain, such as set-theoretic notation, or operational definitions that are equivalent to
programming an implementation. The UML provides a formal definition of the static format of
the model using a metamodel expressed in UML class diagrams. This is a popular and widely
accepted formal approach for specifying the format of a model and directly leads to the
implementation of interchange formats. UML expresses well-formedness constraints in precise
natural language plus Object Constraint Language expressions. UML expresses the operational
meaning of most constructs in precise natural language. The fully formal approach taken to
specify languages such as Algol-68 was not approachable enough for most practical usage.

Encourage the growth of the OO tools market. By enabling vendors to support a standard
modeling language used by most users and tools, the industry benefits. While vendors still can
add value in their tool implementations, enabling interoperability is essential. Interoperability
requires that models can be exchanged among users and tools without loss of information. This
can only occur if the tools agree on the format and meaning of all of the relevant concepts. Using
a higher meta-level is no solution unless the mapping to the user-level concepts is included in the
standard.

Support higher-level development concepts such as collaborations, frameworks, patterns, and
components. Clearly defined semantics of these concepts is essential to reap the full benefit of
OO and reuse. Defining these within the holistic context of a modeling language is a unique
contribution of the UML.

Integrate best practices. A key motivation behind the development of the UML has been to
integrate the best practices in the industry, encompassing widely varying views based on levels
of abstraction, domains, architectures, life cycle stages, implementation technologies, etc. The
UML is indeed such an integration of best practices.

4. SCOPE OF THE UML

The Unified Modeling Language (UML) is a language for specifying, constructing, visualizing,
and documenting the artifacts of a software-intensive system.

UML Summary, v1.1 5

First and foremost, the Unified Modeling Language fuses the concepts of Booch, OMT, and
OOSE. The result is a single, common, and widely usable modeling language for users of these
and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with existing
methods. As an example, the UML authors targeted the modeling of concurrent, distributed
systems to assure the UML adequately addresses these domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a standard
process. Although the UML must be applied in the context of a process, it is our experience that
different organizations and problem domains require different processes. (For example, the a
development process for shrink-wrapped software is an interesting one, but building shrink-
wrapped software is vastly different from building hard-real-time avionics systems upon which
lives depend.) Therefore, the efforts concentrated first on a common metamodel (which unifies
semantics) and second on a common notation (which provides a human rendering of these
semantics). The UML authors promote a development process that is use-case driven,
architecture centric, and iterative and incremental.1

The UML specifies a modeling language that incorporates the object-oriented community’s
consensus on core modeling concepts. It allows deviations to be expressed in terms of its
extension mechanisms. The developers of the UML had the following objectives in mind during
its development:

• Provide sufficient semantics and notation to address a wide variety of contemporary
modeling issues in a direct and economical fashion.

• Provide sufficient semantics to address certain expected future modeling issues, specifically
related to component technology, distributed computing, frameworks, and executability.

• Provide extensibility mechanisms so individual projects can extend the metamodel for their
application at low cost. We don’t want users to have to need to adjust the UML metamodel
itself.

• Provide extensibility mechanisms so that future modeling approaches could be grown on top
of the UML

• Provide sufficient semantics to facilitate model interchange among a variety of kinds of
tools.

• Provide sufficient semantics to specify the interface to repositories for the sharing and
storage of model artifacts.

4.1 PRIMARY ARTIFACTS OF THE UML
What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

4.1.1 UML-Defining Artifacts
To aid the understanding of the artifacts that constitute the Unified Modeling Language itself,
this document set consists of the UML Semantics, UML Notation Guide, and UML Extensions

1 The Rational Objectory Process is such a process. See www.rational.com.

6 UML Summary, v1.1

documents, plus appendices. Some context for each of these is described below. In addition to
these documents, books are planned that will focus on understandability, examples, and common
usage idioms.

UML Semantics

The UML Semantics document defines the language definition using three consistent views:

Abstract syntax UML class diagrams are used to present the UML
metamodel, its concepts (metaclasses), relationships, and
constraints. Definitions of the concepts are included.

Well-formedness rules The rules and constraints on valid models are defined. The
rules are expressed English prose and in a precise Object
Constraint Language (OCL). OCL is a specification language
that uses simple logic for specifying invariant properties of
systems comprising sets and relationships between sets.

Semantics The semantics of model usage are described in English prose.

These views constitute a formal definition of the UML. A more formal definition would involve
mathematical expressions that few people could understand directly.

A metamodel is a language for specifying a model, in this case an object model. In other words,
it is a model of modeling elements. The purpose of the UML metamodel was to provide a single,
common, and definitive statement of the syntax and semantics of the elements of the UML. The
presence of this metamodel has made it possible for its developers to agree on semantics, de-
coupled from the human-factors issues of how those semantics would best be rendered.
Additionally, the metamodel has made it possible for the team to explore ways to make the
modeling language much simpler by, in a sense, unifying the elements of the Unified Modeling
Language. (For example, commonality among the concepts of classes, patterns, and use cases
was discovered.) The authors expect select individuals to express this metamodel even more
precisely by describing its semantics using formal techniques.

The “level” of meta in a model is somewhat arbitrary, and the UML developers consciously
chose a semantically rich level, because that level is necessary to enable the semantically rich
agreement necessary for the design of complex systems, consistent use, and tool interchange.

There are two appendices: Standard Elements and UML Glossary.

UML Notation Guide

The UML Notation Guide describes the UML notation and provides examples. The graphical
notation and textual syntax are the most visible part of the UML (the “outside” view), used by
humans and tools to model systems. These are representations of a user-level model, which is
semantically an instance of the UML metamodel. The standard diagram types are listed in
section 4.1.2, below. The Notation Guide also summarizes the UML semantics; however, the
UML Semantics document contains the definitions.

UML Summary, v1.1 7

UML Extensions

User-defined extensions of the UML are enabled through the use of stereotypes, tagged values,
and constraints. Two extensions are currently defined: 1) Objectory Process and 2) Business
Engineering.

The UML is broadly applicable without extension, so companies and projects should define
extensions only when they find it necessary to introduce new notation and terminology.
Extensions will not be as universally understood, supported, and agreed upon as the UML itself.
In order to reduce potential confusion around vendor implementations, the following terms are
defined:

UML Variant - a language with well-defined semantics that is built on top of the UML
metamodel, as a metamodel. It can specializes the UML metamodel, without changing
any of the UML semantics or redefining any of its terms. (For example, it could not
reintroduce a class called State).

UML Extension - a predefined set of Stereotypes, TaggedValues, Constraints, and
notation icons that collectively extend and tailor the UML for a specific domain or
process, e.g. the Objectory Process extension.

4.1.2 Development Project Artifacts
The choice of what models and diagrams one creates has a profound influence upon how a
problem is attacked and how a corresponding solution is shaped. Abstraction, the focus on
relevant details while ignoring others, is a key to learning and communicating. Because of this:

• Every complex system is best approached through a small set of nearly independent views of a
model; No single view is sufficient.

• Every model may be expressed at different levels of fidelity.
• The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams:

• use case diagram
• class diagram
• behavior diagrams:

• statechart diagram
• activity diagram
• interaction diagrams:

• sequence diagram
• collaboration diagram

• implementation diagrams:
• component diagram
• deployment diagram

Although other names are sometimes given these diagrams, this list constitutes the canonical
diagram names.

8 UML Summary, v1.1

These diagrams provide multiple perspectives of the system under analysis or development. The
underlying model integrates these perspectives so that a self-consistent system can be analyzed
and built. These diagrams, along with supporting documentation, are the primary artifacts that a
modeler sees, although the UML and supporting tools will provide for a number of derivative
views. These diagrams are further described in the UML Notation Guide.

A frequently asked question has been, “Why doesn’t UML support data-flow diagrams?” Simply
put, data-flow and other diagram types that were not included in the UML do not fit as cleanly
into a consistent object-oriented paradigm. Activity diagrams accomplish much of what people
want from DFDs, and then some; activity diagrams are also useful for modeling workflow. The
authors of the UML are clearly promoting the UML diagrams above over all others for object-
oriented projects, but don’t necessarily condemn all other diagrams. We believe we defined a set
of successful and practical techniques, fitting within a consistent paradigm.

4.2 OUTSIDE THE SCOPE OF THE UML
Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming language, in
the sense of having all the necessary visual and semantic support to replace programming
languages. The UML is a language for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system, but it does draw the line as you move toward code.
Some things, like complex branches and joins, are better expressed in a textual programming
language. The UML does have a tight mapping to a family of OO languages, so that you can get
the best of both worlds.

Tools

Standardizing a language is necessarily the foundation for tools and process. The Object
Management Group’s RFP (OADTF RFP-1) was a key driver in motivating the UML definition.
The primary goal of the RFP was to enable tool interoperability. However, tools and their
interoperability are very dependent on a solid semantic and notation definition, such as the UML
provides. The UML defines a semantic metamodel, not an tool interface, storage, or run-time
model, although these should be fairly close to one another.

The UML documents do include some tips to tool vendors on implementation choices, but do not
address everything needed. For example, they don’t address topics like diagram coloring, user
navigation, animation, storage/implementation models, or other features.

Process

Many organizations will use the UML as a common language for its project artifacts, but will use
the same UML diagram types in the context of different processes. The UML is intentionally
process independent, and defining a standard process was not a goal of the UML or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well-defined and
well-managed process is often a key discriminator between hyperproductive projects and
unsuccessful ones. The reliance upon heroic programming is not a sustainable business practice.
A process 1) provides guidance as to the order of a team’s activities, 2) specifies what artifacts
should be developed, 3) directs the tasks of individual developers and the team as a whole, and 4)
offers criteria for monitoring and measuring a project’s products and activities.

UML Summary, v1.1 9

Processes by their very nature must be tailored to the organization, culture, and problem domain
at hand. What works in one context (shrink-wrapped software development, for example) would
be a disaster in another (hard-real-time, human-rated systems, for example). The selection of a
particular process will vary greatly, depending on such things like problem domain,
implementation technology, and skills of the team.

Booch, OMT, OOSE, and many other methods have well-defined processes, and the UML can
support most methods. There has been some convergence on development process practices, but
there is not yet consensus for standardization. What will likely result in the industry is general
agreement on best practices and potentially the embracing of a process framework, within which
individual processes can be instantiated. Although the UML does not mandate a process, its
developers have recognized the value of a use-case driven, architecture-centric, iterative, and
incremental process, so were careful to enable (but not require) this with the UML.

4.3 COMPARING UML TO OTHER MODELING LANGUAGES

It should be made clear that the Unified Modeling Language is not a radical departure from
Booch, OMT, or OOSE, but rather the legitimate successor to all three. This means that if you
are a Booch, OMT, or OOSE user today, your training, experience, and tools will be preserved,
because the Unified Modeling Language is a natural evolutionary step. The UML will be equally
easy to adopt for users of many other methods, but their authors must decide for themselves
whether to embrace the UML concepts and notation underneath their methods.

The Unified Modeling Language is more expressive yet cleaner and more uniform than Booch,
OMT, OOSE, and other methods. This means that there is value in moving to the Unified
Modeling Language, because it will allow projects to model things they could not have done
before. Users of most other methods and modeling languages will gain value by moving to the
UML, since it removes the unnecessary differences in notation and terminology that obscure the
underlying similarities of most of these approaches.

With respect to other visual modeling languages, including entity-relationship modeling, BPR
flow charts, and state-driven languages, the UML should provide improved expressiveness and
holistic integrity.

Users of existing methods will experience slight changes in notation, but this should not take
much relearning and will bring a clarification of the underlying semantics. If the unification
goals have been achieved, UML will be an obvious choice when beginning new projects,
especially as the availability of tools, books, and training becomes widespread. Many visual
modeling tools support existing notations, such as Booch, OMT, OOSE, or others, as views of an
underlying model; when these tools add support for UML (as some already have) users will
enjoy the benefit of switching their current models to the UML notation without loss of
information.

Existing users of any OO method can expect a fairly quick learning curve to achieve the same
expressiveness as they previous knew. One can quickly learn and use the basics productively.
More advanced techniques, such as the use of stereotypes and properties, will require some
study, since they enable very expressive and precise models, needed only when the problem at
hand requires them.

10 UML Summary, v1.1

4.4 NEW FEATURES OF THE UML
The goals of the unification efforts were to keep it simple, to cast away elements of existing
Booch, OMT, and OOSE that didn’t work in practice, to add elements from other methods that
were more effective, and to invent new only when an existing solution was not available.
Because the UML authors were in effect designing a language (albeit a graphical one), they had
to strike a proper balance between minimalism (everything is text and boxes) and over-
engineering (having an icon for every conceivable modeling element). To that end, they were
very careful about adding new things, because they didn’t want to make the UML unnecessarily
complex. Along the way, however, some things were found that were advantageous to add
because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including extensibility mechanisms:
stereotypes, tagged values, and constraints; threads and processes; distribution and concurrency
(e.g. for modeling ActiveX/DCOM and CORBA); patterns/collaborations; activity diagrams (for
business process modeling); refinement (to handle relationships between levels of abstraction);
interfaces and components; and a constraint language.

Many of these ideas were present in various individual methods and theories but UML brings
them together into a coherent whole. In addition to these major changes, there are many other
localized improvements over the Booch, OMT, and OOSE semantics and notation.

The UML is an evolution from Booch, OMT, OOSE, several other object-oriented methods, and
many other sources. These various sources incorporated many different elements from many
authors, including non-OO influences. The UML notation is a melding of graphical syntax from
various sources, with a number of symbols removed (because they were confusing, superfluous,
or little used) and with a few new symbols added. The ideas in the UML come from the
community of ideas developed by many different people in the object-oriented field. The UML
developers did not invent most of these ideas; rather, their role was to select and integrate the
best ideas from OO and computer-science practices. The actual genealogy of the notation and
underlying detailed semantics is complicated, so it is discussed here only to provide context, not
to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other OO methods.
Extensions (e.g., stereotypes and their corresponding icons) can be defined for various diagrams
to support other modeling styles. Stereotypes, constraints, and taggedValues are concepts added
in UML that did not previously exist in the major modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with minor
modifications. The Activity diagram, which shares much of the same underlying semantics, is
similar to the work flow diagrams developed by many sources including many pre-OO sources.
Oracle and Jim Odell were instrumental in incorporating Activity Diagrams into UML.

Sequence diagrams were found in a variety of OO methods under a variety of names (interaction,
message trace, and event trace) and date to pre-OO days. Collaboration diagrams were adapted
from Booch (object diagram), Fusion (object interaction graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

UML Summary, v1.1 11

The implementation diagrams (component and deployment diagrams) are derived from Booch’s
module and process diagrams, but they are now component-centered, rather than module-
centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the metamodel.
User-defined icons can be associated with given stereotypes for tailoring the UML to specific
processes.

Object Constraint Language is used by UML to specify the semantics and is provided as a
language for expressions during modeling. OCL is an expression language having its root in the
Syntropy method and has been influenced by expression languages in other methods like
Catalysis. The informal navigation from OMT has the same intent, where OCL is formalized and
more extensive.

Each of these concepts has further predecessors and many other influences. We realize that any
brief list of influences is incomplete and we recognize that the UML is the product of a long
history of ideas in the computer science and software engineering area.

5. UML PAST, PRESENT, AND FUTURE

The UML was developed by Rational Software and its partners. It is the successor to the
modeling languages found in the Booch, OOSE/Jacobson, OMT, and other methods. Many
companies are incorporating the UML as a standard into their development process and products,
which cover disciplines such as business modeling, requirements management, analysis &
design, programming, and testing.

5.1 UML 0.8 - 0.91
Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970 and the late
1980s as various methodologists experimented with different approaches to object-oriented
analysis and design. Several other techniques influenced these languages, including Entity-
Relationship modeling, the Specification & Description Language (SDL, circa 1976, CCITT),
and other techniques. The number of identified modeling languages increased from less than 10
to more than 50 during the period between 1989-1994. Many users of OO methods had trouble
finding complete satisfaction in any one modeling language, fueling the “method wars.” By the
mid-1990s, new iterations of these methods began to appear, most notably Booch ’93, the
continued evolution of OMT, and Fusion. These methods began to incorporate each other’s
techniques, and a few clearly prominent methods emerged, including the OOSE, OMT-2, and
Booch ’93 methods. Each of these was a complete method, and was recognized as having certain
strengths. In simple terms, OOSE was a use-case oriented approach that provided excellent
support business engineering and requirements analysis. OMT-2 was especially expressive for
analysis and data-intensive information systems. Booch ’93 was particularly expressive during
design and construction phases of projects and popular for engineering-intensive applications.

12 UML Summary, v1.1

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim Rumbaugh of
Rational Software Corporation began their work on unifying the Booch and OMT (Object
Modeling Technique) methods. Given that the Booch and OMT methods were already
independently growing together and were collectively recognized as leading object-oriented
methods worldwide, Booch and Rumbaugh joined forces to forge a complete unification of their
work. A draft version 0.8 of the Unified Method, as it was then called, was released in October
of 1995. In the Fall of 1995, Ivar Jacobson and his Objectory company joined Rational and this
unification effort, merging in the OOSE (Object-Oriented Software Engineering) method. The
Objectory name is now used within Rational primarily to describe its UML-compliant process,
the Rational Objectory Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim Rumbaugh,
and Ivar Jacobson were motivated to create a unified modeling language for three reasons. First,
these methods were already evolving toward each other independently. It made sense to continue
that evolution together rather than apart, eliminating the potential for any unnecessary and
gratuitous differences that would further confuse users. Second, by unifying the semantics and
notation, they could bring some stability to the object-oriented marketplace, allowing projects to
settle on one mature modeling language and letting tool builders focus on delivering more useful
features. Third, they expected that their collaboration would yield improvements in all three
earlier methods, helping them to capture lessons learned and to address problems that none of
their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

• Enable the modeling of systems (and not just software) using object-oriented concepts
• Establish an explicit coupling to conceptual as well as executable artifacts
• Address the issues of scale inherent in complex, mission-critical systems
• Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike designing a
programming language. There are tradeoffs. First, one must bound the problem: Should the
notation encompass requirement specification? (Yes, partially.) Should the notation extend to the
level of a visual programming language? (No.) Second, one must strike a balance between
expressiveness and simplicity: Too simple a notation will limit the breadth of problems that can
be solved; too complex a notation will overwhelm the mortal developer. In the case of unifying
existing methods, one must also be sensitive to the installed base: Make too many changes, and
you will confuse existing users. Resist advancing the notation, and you will miss the opportunity
of engaging a much broader set of users. The UML definition strives to make the best tradeoffs
in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9 and 0.91
documents in June and October of 1996. During 1996, the UML authors invited and received
feedback from the general community. They incorporated this feedback, but it was clear that
additional focused attention was still required.

UML Summary, v1.1 13

5.2 UML 1.0 - 1.1 AND THE UML PARTNERS

During 1996, it became clear that several organizations saw UML as strategic to their business.
A Request for Proposal (RFP) issued by the Object Management Group (OMG) provided the
catalyst for these organizations to join forces around producing a joint RFP response. Rational
established the UML Partners consortium with several organizations willing to dedicate
resources to work toward a strong UML 1.0 definition. Those contributing most to the UML 1.0
definition included: Digital Equipment Corp., HP, i-Logix, IntelliCorp, IBM, ICON Computing,
MCI Systemhouse, Microsoft, Oracle, Rational Software, TI, and Unisys. This collaboration
produced UML 1.0, a modeling language that was well defined, expressive, powerful, and
generally applicable. This was submitted to the OMG in January 1997 as an initial RFP response.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich
Technologies; and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the partners produced
the revised UML 1.1 response. The focus of the UML 1.1 release was to improve the clarity of
the UML 1.0 semantics and to incorporate contributions from the new partners. It has been
submitted to the OMG for their consideration for adoption.

Booch ´91

Booch ´93

Unified Method 0.8

UML 1.0

OMT - 2

OMT - 1 OOSE

UML 0.9 & 0.91

OOPSLA ´95

June ´96 & Oct ´96

Publication of UML 1.1 September ´97

Other methods

public
feedback

Publication of
UML 1.0, Jan ´97

UML Partners’
Expertise

Industrialization

Standardization

Unification

Fragmentation

UML 1.1

Focus of UML Cooperation

The UML Partners contributed a variety of expert perspectives, including, but not limited to the
following: OMG and RM-ODP technology perspectives, business modeling, constraint language,
state machine semantics, types, interfaces, components, collaborations, refinement, frameworks,
distribution, and metamodel. The result—UML 1.1—is the result of a collaborative team effort.
A list of individuals contributing to the UML is in the Acknowledgments section. The UML

14 UML Summary, v1.1

partners have worked hard as a team to define UML 1.0 and 1.1. While each partner came in with
their own perspective and areas of interest, the result has benefited from each of them and from
the diversity of their experiences.

Hewlett-Packard provided input on the relationship between UML models and reuse issues and
in the use of packages and “facades” to facilitate the construction of reusable component-based
application frameworks. They advocate a layered UML structure and mechanisms to define
extensible, modular method subsets for HP Fusion, reuse, and domain-specific methods. They
also contributed to how inter-model relationships are modeled. They also focused on the use of
patterns and the relationship to CORBA services. (See www.hp.com, [Malan96], [Griss96].)

IBM’s primary contribution to the UML is the Object Constraint Language (OCL). OCL was
developed at IBM as a language for business modeling within IBM and is derived from the
Syntropy method. It is used within UML both to help formalize the semantics of the language
itself and to provide a facility for UML users to express precise constraints on the structure of
models. IBM’s contributions to UML have also included fundamental concepts in the semantics
of refinement and templates. (See www.ibm.com, [Cook])

i-Logix contributed with expertise in the definition, semantics, and use of executable behavior
and the use of events and signals within the UML. The UML incorporates Harel statecharts to
provide a hierarchical specification of concurrent behavior. i-Logix also focused strongly on the
relation between object and behavioral models in UML. (See www.ilogix.com, [Harel 87], [Harel
96a], [Harel 96b].)

ICON Computing contributed in the area of precise behavior modeling of component and
framework-based systems, with a clear definition of abstraction and refinement from business to
code. Their primary technical areas in UML have been types, behavior specifications,
refinement, collaborations, and composition of reusable frameworks, adapted from the Catalysis
method. (See www.iconcomp.com, [D’Souza 1997a], [D’Souza 1997b].)

IntelliCorp contributed to business modeling aspects of the UML, activity diagrams and object
flow in particular, as well as formalization for the concept of roles, and other aspects of object
and dynamic modeling. (See www.intellicorp.com, [Martin/Odell 95], [Bock/Odell 94].)

MCI Systemhouse - As a leading systems integrator MCI Systemhouse has worked to ensure
that the UML is applicable to a wide range of application domains. Their expertise in distributed
object systems has made the UML more scalable and better able to address issues of distribution
and concurrency. MCI Systemhouse played an important role in defining the metamodel and the
glossary, especially in their leadership of a semantics task force during the UML 1.1 phase. They
also assisted in aligning the UML with other OMG standards and RM-ODP. (See
www.systemhouse.mci.com.)

Microsoft provided expertise with the issues of building component-based systems, including
modeling components, their interfaces and their distribution. They have also focused on the
relationship between UML and standards such as ActiveX and COM and use the UML with their
repository technology.. (See www.microsoft.com.)

ObjecTime contributed in the areas of formal specification, extensibility, and behavior. They
played a key role in definitions for state machines, common behavior, role modeling, and
refinement. They also contributed to the RM-ODP comparison. (See www.objectime.com.)

UML Summary, v1.1 15

Oracle helped in the definition and support for modeling business processes and for describing
business models in UML. They focused on support for workflow descriptions and activity
diagrams as well as business objects, and have prepared stereotypes for tailoring the UML for
business modeling. (See www.oracle.com, [Ramackers95], and [Ramackers96].)

Platinum Technology contributed in the areas of extension mechanisms, alignment with the
MetaObject Facility, metamodeling, CDIF perspectives, and tool interoperability. (See
www.platinum.com.)

Ptech contributed expertise in metamodels, distributed systems, and other topics. (See
www.ptechinc.com.)

Rational Software defined the original UML and led the UML 1.0 and 1.1 projects, technically
and managerially. Rational’s diverse experience in object-oriented, component-based, and visual
modeling technology has contributed greatly to the UML. (See www.rational.com/uml, [Booch
et al.], [Rumbaugh et al.], and [Jacobson et al.].)

Reich Technologies and Taskon contributed their expertise on collaborations and role
modeling. (See www.sn.no.)

Softeam provided detailed reviews of the UML during its evolution. (See www.softeam.fr.)

Sterling Software contributed with their expertise on the modeling of components and types.
They focused on type models and specifications, on business modeling, and on the relationship
of the UML definition to standards. Texas Instruments Software, a UML Partner, was acquired
by Sterling Software during the UML 1.1 definition phase. (See www.sterling.com.)

Unisys has a strong interest in the meta-metamodels and their relationship to the UML, including
the formalization of relationships and constraints at the meta-level and meta-meta-level
consistently. Within the UML proposal they have particularly focused on the integration of the
UML and the OMG’s Meta-Object Facility and CORBA IDL. They were instrumental in the
IDL generation for the UML CORBAfacility. (See www.unisys.com.)

5.3 SUMMARY OF CHANGES BETWEEN 1.0 AND 1.1
The primary changes between UML 1.0 and 1.1 include:

• Increased formalism
• Improved packaging structure
• Unification of collaboration and interaction semantics
• Simplification of the class/type/interface model
• Unification of relationship semantics
• Extension of model management semantics, including models and subsystems
• Extension of use case semantics
• Improved mapping of notation to semantics

16 UML Summary, v1.1

5.4 UML PRESENT AND FUTURE

The UML is nonproprietary and open to all. It addresses the needs of user and scientific
communities, as established by experience with the underlying methods on which it is based.
Many methodologists, organizations, and tool vendors have committed to use it. Since the UML
builds upon similar semantics and notation from Booch, OMT, OOSE, and other leading methods
and has incorporated input from the UML partners and feedback from the general public,
widespread adoption of the UML should be straightforward.

There are two aspects of “unified” that the UML achieves: First, it effectively ends many of the
differences, often inconsequential, between the modeling languages of previous methods.
Secondly, and perhaps more importantly, it unifies the perspectives among many different kinds
of systems (business versus software), development phases (requirements analysis, design, and
implementation), and internal concepts.

Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard, since it is
based on the modeling languages of leading OO methods. The UML is ready for widespread use.
These documents are suitable as the primary source for authors writing books and training
materials, as well as developers implementing visual modeling tools. Additional collateral, such
as articles, training courses, examples, and books, will soon make the UML very approachable
for a wide audience. The UML 1.1 has been submitted to the OMG for considered technology
adoption in September 1997, coincident with the publication of this document.

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The number of
endorsing organizations is expected to grow significantly over time. These organizations will
continue to encourage the use of the Unified Modeling Language by making the definition
readily available and by encouraging other methodologists, tool vendors, training organizations,
and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the increasing
demand for supporting tools, books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future improvements in
modeling concepts. We have addressed many leading-edge techniques, but expect additional
techniques to influence future versions of the UML. Many advanced techniques can be defined
using UML as a base. The UML can be extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including those for
visual modeling, simulation, and development environments. As interesting tool integrations are
developed, implementation standards based on the UML will become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the use of OO.
Component-based development is an approach worth mentioning. It is synergistic with
traditional object-oriented techniques. While reuse based on components is becoming
increasingly widespread, this does not mean that component-based techniques will replace

UML Summary, v1.1 17

object-oriented techniques. There are only subtle differences between the semantics of
components and classes.

5.5 ADDITIONAL INFORMATION

These documents, additional information, as well as any updates to the UML will appear on
Rational Software’s web site, www.rational.com/uml.

6. ACKNOWLEDGMENTS

The UML was crafted through the dedicated efforts of individuals and companies who find UML
strategic to their future. This section acknowledges the efforts of these top-notch individuals who
contributed to defining UML 1.1.

UML 1.1 Core Team
• HP: Martin Griss
• I-Logix: Eran Gery, David Harel
• ICON Computing: Desmond D’Souza
• IBM: Steve Cook, Jos Warmer
• MCI Systemhouse: Cris Kobryn, Joaquin Miller
• ObjecTime: John Hogg, Bran Selic
• IntelliCorp and James Martin & Co.: James Odell
• Oracle: Guus Ramackers
• Platinum Technology: Dilhar DeSilva
• Rational Software: Grady Booch, Ed Eykholt (project lead), Ivar Jacobson, Gunnar Overgaard,

Karin Palmkvist, Jim Rumbaugh
• Taskon: Trygve Reenskaug
• Sterling Software: John Cheesman, Keith Short
• Unisys: Sridhar Iyengar, GK Khalsa

UML 1.1 Semantics Task Force

During the 1.1 phase, a team was formed to focus on improving the formality of the UML 1.0
semantics, as well as incorporating additional ideas from the partners. Under the leadership of
Cris Kobryn, this team was very instrumental in reconciling diverse viewpoints into a consistent
set of semantics, as expressed in the revised UML Semantics. Other members of this team were
Dilhar DeSilva, Martin Griss, Sridhar Iyengar, Eran Gery, Gunnar Overgaard, Karin Palmkvist,
Guus Ramackers, Bran Selic, and Jos Warmer. Booch, Jacobson, and Rumbaugh provided their
expertise to the team, as well.

Contributors and Supporters

We appreciate the contributions, influence, and support of the following individuals.

Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave Bernstein, Philip A. Bernstein, Michael
Blaha, Conrad Bock, Mike Bradley, Ray Buhr, Gary Cernosek, James Cerrato, Michael Jesse
Chonoles, Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman, Ward Cunningham, Raj

18 UML Summary, v1.1

Datta, Mike Devlin, Philippe Desfray, Bruce Douglass, Staffan Ehnebom, Maria Ericsson,
Johannes Ernst, Don Firesmith, Martin Fowler, Adam Frankl, Eric Gamma, Dipayan
Gangopadhyay, Garth Gullekson, Rick Hargrove, Tim Harrison, Richard Helm, Brian
Henderson-Sellers, Michael Hirsch, Bob Hodges, Glenn Hollowell, Yves Holvoet, Jon Hopkins,
John Hsia, Ralph Johnson, Anneke Kleppe, Philippe Kruchten, Paul Kyzivat, Martin Lang, Grant
Larsen, Reed Letsinger, Mary Loomis, Jeff MacKay, Robert Martin, Terrie McDaniel, Jim
McGee, Bertrand Meyer, Mike Meier, Randy Messer, Greg Meyers, Fred Mol, Luis Montero,
Paul Moskowitz, Andy Moss, Jan Pachl, Paul Patrick, Woody Pidcock, Bill Premerlani, Jeff
Price, Jerri Pries, Terry Quatrani, Mats Rahm, George Reich, Rich Reitman, Rudolf M. Riess,
Erick Rivas, Kenny Rubin, Jim Rye, Danny Sabbah, Tom Schultz, Ed Seidewitz, Gregson Siu,
Jeff Sutherland, Dan Tasker, Dave Tropeano, Andy Trice, Dan Uhlar, John Vlissides, Larry
Wall, Paul Ward, Alan Wills, Rebecca Wirfs-Brock, Bryan Wood, Ed Yourdon, and Steve
Zeigler.

7. REFERENCES
[Bock/Odell 94] C. Bock and J. Odell, “A Foundation For Composition,” Journal of

Object-oriented Programming, October 1994.

[Booch et al.] Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified Modeling
Language User Guide, ISBN: 0-201-57168-4, Addison Wesley, est.
publication December 1997. See www.awl.com/cp/uml/uml.html.

[Cook] S. Cook and J. Daniels, Designing Object Systems: Object-oriented
Modelling with Syntropy, Prentice-Hall Object-Oriented Series, 1994.

[D’Souza 1997a] D. D’Souza and A. Wills, “Input for the OMG Submission,”
www.iconcomp.com/catalysis

[D’Souza 1997b] D. D’Souza and A. Wills, “Catalysis: Component and Framework based
development” www.iconcomp.com/catalysis

[Fowler] M. Fowler with K. Scott, UML Distilled: Applying the Standard Object
Modeling Language, ISBN 0-201-32563-2, Addison-Wesely, 1997.
http://www.awl.com/cp/uml/uml.html

[Griss96] M. Griss, Domain Engineering And Variability In The Reuse-Driven
Software Engineering Business. Object Magazine. Dec 1996. (See
www.hpl.hp.com/reuse)

[Harel 87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming 8 (1987), 231-274.

[Harel 96a] D. Harel and E. Gery, “Executable Object Modeling with Statecharts,”
Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE Press, March, 1996, pp.
246-257.

UML Summary, v1.1 19

[Harel 96b] D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts,”
ACM Trans. Soft. Eng. Method 5:4 (Oct. 1996).

[Jacobson et al.] Ivar Jacobson, Grady Booch, and Jim Rumbaugh, The Objectory Software
Development Process, ISBN: 0-201-57169-2, Addison Wesley est.
publication December 1997. See www.awl.com/cp/uml/uml.html and the
“Rational Objectory Process” on www.rational.com.

[Malan96] R. Malan, D. Coleman, R. Letsinger et al, The Next Generation of Fusion,
Fusion Newsletter, Oct 1996. (See www.hpl.hp.com/fusion.)

[Martin/Odell 95] J. Martin and J. Odell, Object-oriented Methods, A Foundation, ISBN:
0-13-630856-2, Prentice Hall, 1995

[Ramackers95] Ramackers, G. and Clegg, D., “Object Business Modelling, requirements
and approach” in Sutherland, J. and Patel, D. (eds.), Proceedings of the
OOPSLA95 workshop on Business Object Design and Implementation,
Springer Verlag, publication pending.

[Ramackers96] Ramackers, G. and Clegg, D., “Extended Use Cases and Business Objects
for BPR,” ObjectWorld UK ‘96, London, June 18-21, 1996.

[Rumbaugh et al.] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, Unified Modeling
Language Reference Manual, ISBN: 0-201-30998-X, Addison Wesley,
est. publication December 1997. See www.awl.com/cp/uml/uml.html.

 [UML Web Site] www.rational.com/uml

